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Abstract

We present a model where endogenous liquidity generates a feedback loop between
secondary market liquidity and firms’ financing decisions in primary markets. En-
dogenous liquidity determines the liquidity premium, which affects issuance in the
primary market, and feeds back into secondary market liquidity by changing investors’
portfolio composition. We show that private allocations are inefficient because in-
vestors and firms fail to internalize how they affect secondary market liquidity. These
inefficiencies are established analytically through a set of wedge expressions for key
efficiency margins. Our analysis provides a rationale for the effect of quantitative
easing on capital markets and the real economy.

Keywords: Market liquidity, secondary markets, capital structure, quantitative easing.

JEL classification: E44, G18, G30.

*We are grateful to Regis Breton, Francesca Carapella, Giovanni Favara, Zhiguo He (discussant), Nobu
Kiyotaki, Michal Kowalik (discussant), Konstantin Milbradt, Cecilia Parlatore, Lasse H. Pedersen, Skander
Van den Heuvel, Chris Waller, and seminar participants at Econometric Society World Economic Congress,
SED, Cowles General Equilibrium Conference, EEA, Day Ahead Conference, LACEA, IMF, Society for
Advancement of Economic Theory, Federal Reserve Board, Federal Reserve System Conference Financial
Structure and Regulation, Federal Reserve System Conferene Macroeconomics, St Louis Fed, Banque de
France, and University of Chile for comments. All errors herein are ours. The views expressed in this paper
are those of the authors and do not necessarily represent those of Federal Reserve Board of Governors or
anyone in the Federal Reserve System.
Emails: david.m.arseneau@frb.gov, david.e.rappoport@frb.gov, alexandros.vardoulakis@frb.gov.

1

mailto:david.m.arseneau@frb.gov
mailto:david.e.rappoport@frb.gov
mailto:alexandros.vardoulakis@frb.gov


1 Introduction

Secondary market liquidity is an important consideration for investors buying long-term
assets. At the same time, the issuance of long-term debt in primary markets affects market
liquidity by altering the maturity composition of investors’ portfolios. The interaction
between primary debt markets and secondary market liquidity is important for under-
standing the real effects of financial market imperfections. For example, how does debt
issuance in primary markets affect liquidity in secondary markets? How does the com-
pensation for bearing liquidity risk affect the firm’s incentive to issue debt in the primary
market? Does the interaction between these two channels lead to an efficient capital
structure of the firm? How does quantitative easing affect the real economy through
intervention in either the primary or secondary market?

This paper presents a model to formalize the interaction between primary and sec-
ondary capital markets in order to shed light on these questions. In particular, we are
interested in imperfect secondary trading that gives rise to liquidity risk, as investors’
liquidity needs cannot be met by selling assets frictionlessly in secondary markets.

A key contribution of our paper is to present an alternative theory of secondary market
liquidity determination, where trade frictions interact with limited liquid assets available
to financial market investors.1 In our environment, investors have an incentive to hold
the liquid asset in order to self-insure against liquidity shocks, but doing so comes at the
cost of foregoing a higher return in illiquid long-term bonds. This tradeoff determines
the investors’ optimal portfolio allocation. Once the portfolio is allocated, there is a
fixed amount of liquid assets available to support frictional trade of illiquid assets in the
secondary market. Thus, our notion of secondary market liquidity is one defined by
market thickness, as in the search literature, but where market thickness is determined
endogenously by investors and firms decisions in the primary market.

Interacting this notion of secondary market liquidity with the optimal capital structure
of the firm gives rise to three main results. First, we uncover a novel feedback loop, illus-
trated in Figure 1, between secondary market liquidity and the firm’s financing decision
in primary capital markets. This feedback loop allows for liquidity risk associated with
trade in the secondary market to influence firms’ financing decisions through funding
costs. This direct channel has received considerable attention in the literature as it is
closely related to the idea of transaction or information costs impeding trading, as well to
the lending channel of monetary policy. Our framework differs, however, in that we cap-

1 To be explicit, we are drawing a distinction between a liquid asset and market liquidity. The former
refers to an asset that can be easily and costlessly be transformed into consumption. The later refers to the
ease with which one can trade in the market.
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Figure 1: Feedback loop between primary and secondary market for corporate debt

ture an additional channel whereby the firm’s financing decisions in the primary market
feed back into the determination of liquidity in the secondary market. This happens both
directly through the supply of long-term assets and indirectly by altering the composition
of investor portfolios. This link between primary issuance and secondary market liquidity
is key to understanding how the liability structure of firms matters for the optimal inter-
mediation of liquidity risk and the real economy. We prove the existence and uniqueness
of an equilibrium featuring this feedback loop and characterize it in closed form.

Second, we show that this feedback loop distorts capital markets. The interaction
between the primary and secondary markets generically leads to two distortions: one
in the capital structure of the firm and another in the allocation of investor portfolios.
These distortions arise from the fact that neither firms nor investors internalize how
their behavior affects liquidity in the secondary market. In equilibrium, market liquidity
can be suboptimally low (high) implying the firm is over-leveraged (under-leveraged),
hence there is an under-supply (over-supply) of liquid assets for investors trading on the
secondary market. A social planner would like to implement the optimal level of liquidity
in the secondary market by altering the financing decision of firms and the portfolio
allocation of investors. Such an outcome leads to higher firm profits while investors are
no worse off. We derive a set of analytic wedge expressions that highlight two distorted
margins and show how an appropriately designed tax system can decentralize the efficient
equilibrium.

Finally, we provide a theoretical characterization for the effects of quantitative easing
(QE) policies, like the ones observed following the Great Recession. Through the lens
of our model, policies such as quantitative easing that directly alter the composition
of investors’ portfolios shift liquidity risk from investors to the central bank, reducing
liquidity premia. This, in turn, influences savings and investment decisions in the real
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economy (see Stein, 2014, for a general discussion). Our analysis also highlights the
benefits and limitations of such interventions. On the one hand, QE can improve the
intermediation capacity of the economy by expanding its productive frontier. On the other
hand, these policies may be limited by their redistributive effects, the limited expertise of
central banks in bond market participation, and the prospect for financial losses.

The model has three periods, and it is populated by firms that need external financing
to invest in long-term projects and investors who want to transfer funds over time to
consume in all periods. In the initial period, ex ante identical investors supply funds to
firms in primary capital markets, while firms issue claims against their long-term revenues
that materialize only in the final period. The contracting problem between the firm and
investors in the primary debt market is subject to agency frictions, which we model using
the costly state verification (CSV) framework (Townsend, 1979; Gale and Hellwig, 1985;
Bernanke and Gertler, 1989). The choice of the CSV framework is guided by the fact that
it offers a convenient and well understood rationale for the firm’s use of debt financing,
which is central to our model. In addition, the CSV framework allows us to jointly study
the effect of liquidity premia on the composition (leverage) and the riskiness of the capital
structure of the firm. That said, the specific nature of the agency frictions in the primary
market is not detrimental for the generality of our results.2

After the financial contract between the firm and investors is written and investment
decisions are made, a subset of investors receive idiosyncratic (liquidity) shocks that make
them want to consume before the firm’s investments mature and proceeds are distributed.
These shocks are private information and, thus, contingent contracts among patient and
impatient investors cannot be written ex ante. Alternatively, investors can self-insure by
investing part of their endowment in a storage technology or by holding corporate bonds
and re-trading them in a secondary market once the type has been revealed. Corporate
bonds thus not only are a claim on real revenues, but also have a role in facilitating
exchange (see also Rocheteau and Wright, 2013).

In absence of frictions, the ability to trade long-term bonds in the secondary market
would perfectly satisfy impatient investors’ demand for liquidity. Indeed, in this special
case we show that our model collapses to the benchmark CSV model of Bernanke and
Gertler (1989) where liquidity concerns play no role. In practice, however, trading frictions
may impinge on the ability of impatient investors to sell long-term assets. For corporate
bonds, which are traded in over-the-counter (OTC) markets, empirical evidence by Ed-

2The reason is that we are able to disentangle the channel through which market liquidity affects liquidity
premia in long-term assets from the choice of the optimal contract/capital structure of the firm. Hence, any
other financial friction in the primary market such that leverage is decreasing in borrowing costs will yield
similar results.
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wards et al. (2007) and Bao et al. (2011) suggests that search frictions are an important
driver of liquidity premia. Bond financing has become one of the most important sources
of external financing for U.S. corporations. Figure 3 shows that bond financing is the
dominant source of credit liabilities for non-financial corporate firms (Financial Accounts
of the United States data). This paper focuses on bond financing abstracting from the fact
that firms enter into bank loans or other types of borrowing at the same time (see deFiore
and Uhlig, 2011, Aoki and Nikolov, 2014, for models where bank and bond financing
coexist).3

We follow the literature modeling OTC markets with search frictions (Duffie et al., 2005,
Lagos and Rocheteau, 2009, Geromichalos and Herrenbrueck, 2012, He and Milbradt, 2014,
and others). This literature captures a price-based notion of liquidity through the bid-ask
spread and treats matching probabilities between buyers and sellers as exogenous. Price
effects are important in our framework, but our focus is broader in the sense that we are
interested in how primary markets for corporate assets interact with secondary market
liquidity. A key aspect of this interaction involves the endogenous nature by which trading
probabilities in the secondary market are determined. Our framework considers a notion
of liquidity determined by market thickness as in Shi (2015), Bruche and Segura (2014), and
Cui and Radde (2015).4 In contrast with these papers, however, market liquidity in our
setup is not determined through the free entry of buyers and sellers, but instead through
the endogeneous decisions of investors and firms in the primary market. Introducing a
costly entry decision for buyers in the secondary market would not be difficult, but would
add an extra margin for the determination of liquidity that is beyond the scope of this
paper.
Related Literature. In a seminal paper, Holmström and Tirole (1998) study a similar question
to ours, but focus on the liquidity needs of firms to cover operational costs before their
investment matures. In contrast, we focus on the liquidity demand of lenders. To this
extent, we model the demand for liquidity as in the seminal paper of Diamond and
Dybvig (1983), but bring re-trading of long-term assets, aggregate liquidity and the capital
structure to the center of our analysis. Holmström and Tirole (1998) also advocate that

3In principle, bank intermediation would be optimal to insure against idiosyncratic liquidity risk in the
spirit of Diamond and Dybvig (1983) when bank runs are not very likely (see Cooper and Ross, 1998, and
Goldstein and Pauzner, 2005) or bank credit is not sufficiently more expensive than bond financing as in
deFiore and Uhlig (2011). However, Jacklin (1987) shows that the efficiency gains of bank intermediation
for investors vanish when secondary capital markets are available and function frictionlessly. This should
continue to be true when the associated frictions in secondary markets are not too severe, while bank
intermediation would dominate when markets are more imperfect (Diamond, 1997).

4In the language of Brunnermeier and Pedersen (2009), this is a concept of market liquidity (the ease
with which illiquid assets can be sold), as opposed to funding liquidity (how much firms can raise by
pledging assets as collateral).
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there is a role for the public sector to create liquid assets, in particular government debt,
which can be used by firms to insure against liquidity shocks. While similar in spirit,
the mechanism through which public liquidity has real effects is different from ours. In
our framework, investors have access to a storage technology in perfectly elastic supply,
so there is no scope for the public sector to create a store of value, which is central in
Holmström and Tirole. Reserves are a substitute for storage, but through quantitative
easing liquidity risk is shifted from the private to the public sector, increasing the liquidity
risk tolerance of investors.

A related literature has studied the role of endogenous liquidity for financial intermedi-
ation and the macroeconomy, considering adverse selection arising from asymmetrically
informed agents participating in the secondary market. This literature differs from the
search microfoundations of illiquidity because the difficulty of finding a buyer depends
primarily on the extent of private information rather than the availability of trading op-
portunities. In a seminal paper in this literature, Gorton and Pennacchi (1990) show
how the information sensitivity of financial contracts affects their liquidity in secondary
markets and study the capital structure of the firm and efficient intermediation. Gorton
and Pennacchi show that uninformed investors respond by demanding informationally
insensitive assets, notably riskless debt. Hence, their approach is important for under-
standing how investors’ decisions to participate in these markets (the extensive margin of
investors’ portfolio choice) affects the firm’s capital structure. In contrast, our approach
of introducing search frictions to limit trade in secondary markets allows us to examine
how—given full participation in both asset markets—the intensive margin of investors’
portfolio choice affects the firm’s financing decision and how the firm’s financing decision,
in turn, affects investors’ portfolios.

Recent contributions to this literature have explored similar questions to ours. Guer-
rieri and Shimer (2014) examine how adverse selection about the quality of assets affects
their liquidity premia, and suggest that unconventional policy interventions, such as as-
set purchases, can enhance the liquidity of assets not included in the purchase programs.
Nevertheless, they do not study how illiquidity and policy interventions affect the equi-
librium supply of assets, i.e., they abstract from corporate finance issues. Malherbe (2014),
who builds on an adverse selection model of liquidity by Eisfeldt (2004), shows that, in
contrast, excess cash-holdings impose a negative externality on others because they re-
duce the quality of assets put for sale in the secondary market. Kurlat (2013) and Bigio
(2015) study the interaction of business cycle dynamics and illiquidity induced by adverse
selection in asset markets. Gorton and Ordoñez (2014) present a dynamic model where
costly information production can generate financial fragility and financial crises.
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Our paper is also related to the literature that considers financial intermediation fric-
tions arising from from aggregate liquidity risk and incomplete markets. When investors
face aggregate liquidity risk which cannot be hedged due to market incompleteness,
liquidity provision in the form of aggregate savings/reserves may be suboptimally low
(Bhattacharya and Gale, 1987; Allen and Gale, 2004).5 In our paper, inefficient liquid-
ity stems from trading frictions rather than aggregate shocks, which yields important
implications for the liquidity premia of corporate bonds during periods that aggregate
liquidity shocks are expected to occur rather infrequently. Consequently, our mechanism
could potentially explain the fluctuations in liquidity and default risk premia, as well as
firms’ leverage even when aggregate liquidity shortages are unlikely or excluded due to
the presence of unconventional policies, such as quantitative easing.

The rest of the paper proceeds as follows. Section 2 presents the model and derives
the equilibrium conditions. Section 3 shows how secondary market liquidity interacts
with the optimal financing decisions of the firm. Section 4 present the social planner’s
problem, describes the externality operating through secondary market liquidity, and
analytically describes the set of policy instruments that can implement the constrained
efficient outcome. Section 5 analyses the effect of quantitative easing on secondary market
liquidity and financing decisions. Finally, section 6 concludes. All proofs are relegated to
the Appendix.

2 Model

2.1 Physical Environment

There are three time periods t = 0, 1, 2, a single consumption good, and two type of agents:
entrepreneurs and investors. Entrepreneurs have long-term investment projects and may
fund these projects with internal funds or with loans from investors. Ex ante identical
investors lend funds to entrepreneurs, but once that lending has taken place and while
production is underway, investors are subject to a preference (liquidity) shock which
reveals whether they are impatient, and hence prefer to consume earlier rather than later,
or patient. These two types of investors trade their assets in secondary asset markets with
search frictions (see Figure 2).

There is a mass one of ex ante identical entrepreneurs, who are endowed with n0 units

5Liquidity under-provision may also stems from hidden trades undoing the efficient sharing of liquidity
risk across impatient and patient agents as in Farhi et al. (2009) or fire-sales externalities (Lorenzoni, 2008;
Korinek, 2011; Acharya, Shin and Yorulmazer, 2011), which we abstract from in our paper.
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Figure 2: Timeline.

of capital at t = 0. Entrepreneurs invest to maximize the return on their equity, i.e., to
maximize profits per unit of endowment. The technology is linear and delivers Rkω at
t = 2, per unit invested at t = 0. The random variable ω is an idiosyncratic productivity
shock that hits after the project starts, and is distributed according to the cumulative
distribution function F, with unit mean. It is privately observed by the entrepreneur, but
investors can learn about it when they seize entrepreneurs’ assets and pay a monitoring
costs µ as a fraction of assets. The (expected) gross return Rk is assumed to be known at
t = 0, as there is no aggregate uncertainty in the model. In order to produce, the firm
must finance investment, denoted k0, either through its own funds or by issuing financial
contracts to investors. So profits equal total revenue in period 2, Rkωk0, minus payment
obligations from financial contracts. Entrepreneurs represent the corporate sector in our
model, so we will talk about entrepreneurs’ projects and firms interchangeably.

There is a mass one of ex ante identical investors, who are endowed with e0 units of
capital at t = 0. Investors have unknown preferences at t = 0, and learn their preferences
at t = 1. At t = 1 investors realize if they are patient or impatient consumers, a fraction
1 − δ will turn out to be patient and a fraction δ impatient. Patient consumers have
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preferences only for consumption in t = 2, uP(c1, c2) = c2, whereas impatient consumers
have preferences for both consumption in t = 1 and 2, but discount period 2 consumption
at rate β, uI(c1, c2) = c1 + βc2.

Investors in both period 0 and 1 have access to a storage technology with yield r > 0,
i.e., every unit stored yields 1 + r units of consumption in the next period. The amount
stored in period t is denoted st. In addition, at t = 0, they can invest in financial contracts
issued by entrepreneurs in primary markets; and, at t = 1, they can buy and sell assets
in secondary markets with search frictions (see Figure 2). When engaging in trade in the
secondary market patient investors realize a return ∆. Both the primary and secondary
markets are described in detail below.6

In what follows we make the following assumptions.

Assumption 1 (Relative Returns) The long-term return of the productive technology is larger
than the cumulative two-period storage return and the return on storage plus the return on
secondary markets, i.e., (1 + r)2 < Rk and (1 + r)∆ < Rk. In addition, monitoring costs are such
that Rk(1 − µ) < (1 + r)2.

Assumption 2 (Productivity Distribution) Let h(ω) = dF(ω)/(1 − F(ω)) denote the hazard
rate of the productivity distribution. It is assumed that ωh(ω) is increasing.

Assumption 3 (Impatience) The rate of preference of impatient investors is such that β ≤
1/(1 + r).

Assumption 4 (Investors Deep Pockets) It is assumed that investors’ (total) endowment e0 is
significantly higher than entrepreneurs’ (total) endowment n0, i.e., e0 >> n0.

Assumption 1 is necessary for there to be a role for the entrepreneurial sector, Rk >

(1 + r)2, and, Rk > (1 + r)∆, when the prospective return on secondary market is taken
into account. Furthermore, this assumption rules out equilibria where entrepreneurs are
always monitored, (1 + r)2 > Rk(1 − µ). Assumption 2 ensures that there is no credit
rationing in equilibrium, and together with Assumption 1 will ensure the existence and
uniqueness of equilibrium, as we discuss below. Assumption 3 makes impatient investors
have a (weak) preference for current versus future consumption when the interest rate is r.
Finally, Assumption 4 ensures that investors can meet the credit demand of entrepreneurs.

6Note that since r > 0 and since investors preferences have been assumed time separable and risk
neutral, there was no loss of generality in abstracting away from consumption at t = 0 for investors, and
consumption at t = 1 for patient investors.
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2.2 The Financial Contract

Entrepreneurs finance their investments using either internal funds, n0, or by selling
long-term financial contracts to investors in the primary corporate debt market. These
contracts specify an amount, b0, borrowed from investors at t = 0 and a promised gross
interest rate, Z, made upon completion of the project at t = 2. If entrepreneurs cannot
make the promised interest payments, investors can take all firm’s proceeds paying a
monitoring cost, equal to a fraction µ of the value of assets.7

The t = 0 budget constraint for the entrepreneur is given by

k0 ≤ n0 + b0 . (1)

For what follows it will be useful to define the entrepreneur’s leverage, l0, as the ratio of
assets to (internal) equity k0/n0.

The entrepreneur is protected by limited liability, so its profits are always non-negative.
Thus, the entrepreneur’s expected profit in period t = 2 is given by

E0 max
{
0,Rkωk0 − Zb0

}
.

Limited liability implies that the entrepreneur will default on the contract if the real-
ization of ω is sufficiently low such that the payoff of the long-term project falls below
the promised payout; that is, when Rkωk0 < Zb0. This condition defines a threshold
productivity level, ω̄, such that the entrepreneur defaults when

ω < ω̄ =
Z
Rk

l0 − 1
l0

. (2)

The productivity threshold measures the credit risk of the financial contract; and is increas-
ing in the spread between the promised return and the expected return on the entrepreneur
investment, and increasing in firm’s leverage.

For notational convenience, we define G(ω̄) ≡
∫ ω̄

0
ωdF(ω) and Γ(ω̄) ≡ ω̄(1−F(ω̄))+G(ω̄).

The function G(ω̄) equals the truncated expectation of entrepreneurs’ productivity given
default. The function Γ(ω̄) equals the expected value of a random variable equal to ω if
there is default (ω < ω̄) and equal to ω̄ when there is not (ω ≥ ω̄). It follows that Rkk0Γ(ω̄)

7We consider deterministic monitoring rather than stochastic monitoring, which results in debt being
the optimal contract. Krasa and Villamil (2000) derive the conditions under which deterministic monitoring
occurs in equilibrium in costly enforcement models. In addition, our model features perfect, but costly,
ex-post enforcemnt. See Krasa et al. (2008) for a more elaborate enforcement process and its implications
for firms’ finance.
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corresponds to the expected transfers from entrepreneurs to investors.
Then, firms’ objective, expected profits per unit of endowment, or return on equity,

can be expressed using the previous notation as 8

1
n0
E0 max

{
0,Rkωk0 − Zb0

}
= [1 − Γ(ω̄)] Rkl0 . (3)

Similarly, the total expected payoff of bond contracts can be expressed as∫
∞

ω̄

Zb0dF(ω) + (1 − µ)
∫ ω̄

0
Rkωk0dF(ω) = k0Rk [Γ(ω̄) − µG(ω̄)

]
.

Therefore, the expected gross return of holding a single bond to maturity Rb is given by

Rb =
l0

l0 − 1
Rk [Γ(ω̄) − µG(ω̄)

]
, (4)

which is a function of only leverage and the productivity threshold.
Clearly Rb is decreasing in l0 as leverage dilutes lenders claim on the firm’s assets.

Moreover, in equilibrium it will be increasing in risk, ω̄, as detailed below. Finally,
note that the expected return is known in period 0 and 1, since there is no aggregate
uncertainty or new information arriving after investors and the firm have agreed on the
terms of lending. This means that idiosyncratic liquidity shocks in period 1 do not affect Rb

and investors would trade bonds in a secondary market promising this expected payout.

2.3 The Secondary OTC Market

The ex post heterogeneity introduced by the preference shock generates potential gains
from trading corporate debt in a secondary market. Impatient investors want to exchange
long-term, imperfectly liquid, bonds for consumption, as they would rather consume at
the end of period 1 than hold the bond to maturity until period 2 (Assumption 3). Patient
investors are willing to exchange lower yielding storage for corporate debt with higher
expected returns.

In order for such a trade to take place, buy and sell orders must be paired up according
to a matching technology which aligns them. Impatient investors submit sell orders, one
for each bond they are ready to sell at a given price q1. Patient investors submit buy
orders, one for each package of q1 units of storage they are ready to exchange for a bond.

8The objective of the firm in equation (3) is written in terms of return to equity rather than total profits.
However, both formulations would yield the same equilibrium results as n0 is positive and given.

11



We model the OTC market such that matching is by order, as opposed to by investor.9

Suppose, in aggregate, there are A sell (or ask) orders and B buy orders. The matching
function is assumed to be constant returns to scale and is given by

m(A,B) = νAαB1−α , (5)

with 0 < ν a scaling constant and 0 < α < 1 the elasticity of the matching function with
respect to sell orders. The number of matches is limited by the minimum of the number
of buy and sell orders, so m(A,B) ≤ min{A,B}.

We define a concept of market liquidity through the ratio of buy orders to sell orders, or
θ = B/A. This notion of liquidity—defined by a concept of thickness in the OTC market—
has different implications for traders on opposing sides of the market. For example, when
θ is large, a bond in the secondary market is relatively liquid, that is, it is relatively easy
for sellers to trade. But, at the same time, it is relatively hard for buyers to trade. Note
that our notion of liquidity is related to, but distinct from, the easiness to trade for all
market participants, which is captured in our framework by the efficiency of the matching
technology ν. Increasing (decreasing) ν makes it easier (harder) for participants on both
sides of the market to trade in a symmetric fashion.

Using the matching function, the probability that a sell order is executed is expressed as

f (A,B) =
m(A,B)

A
or f (θ) = m(1, θ) , (6)

and the probability that a buy order is executed is expressed as

p(A,B) =
m(A,B)

B
or p(θ) = m(θ−1, 1) . (7)

The fact that matches are bounded by the minimum number of orders, i.e., m(A,B) ≤
min{A,B}, defines two liquidity threshold θ and θ. When liquidity is smaller than θ = ν1/α

then all buy orders are executed, i.e., m(A,B) = B. In this case buyers trade with probability
p(θ) = 1, whereas sellers trade with probability f (θ) = θ. Alternatively, when liquidity
is higher than θ = ν−1/(1−α) then all sell orders are executed, i.e., m(A,B) = A; and thus
the trade probabilities f (θ) = 1 and p(θ) = θ−1. When liquidity is in [θ, θ] then matches
are given by the matching function (5) and the trade probabilities by equations (6) and
(7). Unless otherwise stated, we restrict attention to the case ν < 1, which guaranties that
θ < θ.

9This can be though of as money chasing bonds, instead of investors chasing investors.
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Once a buy order and a sell order are matched, the terms of trade are determined via a
simple surplus sharing rule known by all agents. From the seller’s perspective, a trading
match yields additional liquid wealth from unloading the incremental bond sold at price
q1. If the seller walks away from the match she holds the bond, which matures in the final
period, delivering an expected payout of Rb in t = 2, which is discounted at rate β. Then,
the surplus that accrues to an impatient investor is given by SI(q1) = q1 − βRb. Similarly,
the value of a trading match to a buyer is the present value of the (expected) return on
the bond, net of the price that needs to be paid for each bond in the secondary market,
SP(q1) = Rb/(1 + r) − q1.

The price of the debt contract on the secondary market is determined by a sharing rule
that maximizes the Nash product of the respective surpluses,

max
q1

(
SI(q1)

)ψ (
SP(q1)

)1−ψ
,

where ψ ∈ [0, 1] is a parameter that determines the split of the surplus between patient
and impatient investors.10

The solution of the surplus splitting problem yields the following bond price in the
secondary market

q1 = Rb

(
ψ

1 + r
+ (1 − ψ)β

)
. (8)

Note that ψ = 1 drives the price of the bond to the “ask” price, or the price that extracts
full rent from the buyer, q1 = Rb

1+r . By the same token, ψ = 0 drives the price of the bond to
the “bid” price, or the price that extracts full rent from the seller, q1 = βRb. From equation
(8) it follows that the return that patient investors make in the secondary market, per
executed buy order, depends only on exogenous parameters and is given by

∆ =
Rb

q1
=

(
ψ

1 + r
+ (1 − ψ)β

)−1

≥ 1 + r .

2.4 Investors

As described above, investors are ex ante identical and are endowed with e0 units of
capital. At t = 0 they can allocate their wealth across two assets: the storage technology

10Our sharing rule is very close to Nash bargaining over the surplus. Under Nash bargaining the
parameter ψ can be interpreted as the bargaining power of sellers.
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and debt contracts. Thus, their budget constraint is given by11

s0 + b0 = e0 , (9)

where s0, b0 ≥ 0, i.e., borrowing at the storage rate or short-selling corporate debt are not
allowed.

The storage technology, denoted s0, pays a fixed rate of return 1 + r at t = 1 in units of
consumption. The proceeds of this investment, if not consumed, can be reinvested to earn
an additional return of 1+r between period 1 and 2, again paid in units of consumption. In
this sense, storage is a liquid asset, as at any point in time it can be costlessly transformed
into consumption. Alternatively, the corporate bond has an expected payoff of Rb, but only
at the beginning of t = 2. Moreover, for an investor to turn her bond into consumption
at t = 1, she will have to post an order in a secondary market characterized by search
frictions. So the bond is illiquid, as it does not allow investors to transform their investment
costlessly into consumption in period 1.

The relative illiquidity of corporate debt comes into play because at the beginning of
t = 1, a fraction δ of investors receive a preference shock that makes them discount future
consumption at rate β. Moreover, Assumption 3 implies that impatient investors prefer
to consume in period 1 relative to period 2. In contrast, the remaining fraction 1 − δ are
patient investors, who only enjoy consumption in t = 2.

Thus, impatient investors find themselves holding corporate debt contracts which
cannot easily be transformed into period t = 1 consumption. Ideally, they would like
to sell this asset to patient investors who are willing to give up units of liquid storage
in exchange for the higher yielding corporate debt. This trading activity takes place in
an OTC secondary market. As described above, impatient investors looking to unload
corporate debt contracts will only get their orders executed with endogenous probability
f (θ). Similarly, patient investors looking to purchase corporate debt will only get their
orders executed with endogenous probability p(θ). If a buy and a sell order are lucky
enough to be matched in the OTC market a bilateral trade takes place and units of bonds
are exchanged for units of storage at the agreed upon price q1.

To describe the portfolio choice problem of investors, it is useful to first consider the
optimal behavior of impatient and patient investors in t = 1 when they arrive to that
period with a generic portfolio of storage and bonds (s0, b0).

11Since the mass of both entrepreneurs and investors equals one, and we focus on the symmetric equi-
librium, we abuse notation and denote the individual supply and demand of debt by b0.
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2.4.1 Impatient Investors

By Assumption 3 at t = 1 impatient investors want to consume in the current period.
They can consume the payout from investing in storage, s0(1 + r), plus the additional
proceeds from placing b0 sell orders in the OTC market. These orders are executed
with probability f (θ) and each executed order yields q1 units of consumption. Thus, the
expected consumption of impatient investors in period 1 is given by

cI
1 = s0(1 + r) + f (θ)q1b0 . (10)

On the other hand, with probability 1 − f (θ) orders are not matched and impatient
investors are forced to carry debt contracts into period 2. Therefore, expected consumption
in the final period is given by

cI
2 = (1 − f (θ))Rbb0 , (11)

and the utility derived from cI
2 is discounted by β.

2.4.2 Patient Investors

Patient investors only value consumption in the final period and will be willing to place
buy orders in the OTC market if there is a surplus to be made, i.e., if q1 ≤ Rb/(1 + r). The
price determination in the OTC market guarantees that this is always the case (1 + r ≤ ∆),
thus patient investor would ideally like to exchange all of the lower yielding units of
storage for corporate debt with a higher expected returns. But their buy orders will be
executed only with probability p(θ).

Therefore, expected storage holdings at the end of t = 1, sP
1 , are equal to a fraction

1 − p(θ) of the available liquid funds s0(1 + r), i.e.,

sP
1 = (1 − p(θ))s0(1 + r) .

On the other hand, patient investors place s0(1 + r)/q1 buy orders, of which a fraction p(θ)
are executed on average. So patient investors expect to increase their bond holding by
p(θ)s0(1 + r)/q1 units. It follows that expected consumption in the final period equals

cP
2 = (1 − p(θ))s0(1 + r)2 +

[
b0 + p(θ)

s0(1 + r)
q1

]
Rb . (12)

That is, the payout from units of storage that were not traded away in the secondary
market plus the expected payout from corporate debt holdings.
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2.4.3 Optimal Portfolio Allocation

In the initial period investors solve a portfolio allocation problem, choosing between
storage and bonds to maximize their expected lifetime utility

U = δ(cI
1 + βcI

2) + (1 − δ)cP
2 ,

subject to the period 0 budget constraint (9), and the expressions for expected consumption
of impatient and patient investors (10)-(12).

We can rewrite the expected lifetime utility as

U = Uss0 + Ubb0 ,

where Us and Ub denote the expected utility from investing in storage and bonds in period
0, respectively, and are given by

Us = δ(1 + r) + (1 − δ)
[
(1 − p(θ))(1 + r)2 + p(θ)(1 + r)

Rb

q1

]
, (13)

and Ub = δ
(

f (θ)q1 + β(1 − f (θ))Rb
)

+ (1 − δ)Rb . (14)

Note that both of these expressions depend on the characteristics of the financial contract,
(l0, ω̄), through the expected return on holding the bond to maturity Rb; and on the
characterisitics of the secondary market, (q1, θ), through the secondary market price q1

and matching probabilities f (θ) and p(θ).
Using these definitions, we can express the asset demand correspondence that maxi-

mizes the investors portfolio problem as
s0 = 0, b0 = e0 if Us < Ub

s0 ∈ [0, e0], b0 = e0 − s0 if Us = Ub

s0 = e0, b0 = 0 if Us > Ub

That is, when the expected benefit of holding storage in period 0 is dominated by the
benefit of holding bonds, then investors will demand only bonds in period 0. On the
contrary, if the expected benefit of holding storage is greater than then expected benefit
of buying a bond in period 0, then investors will only hold storage in the initial period.
Finally, if the expected benefits are equal, investors will be indifferent between investing
in storage and bonds initially, and their demands will be an element of the set of feasible
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portfolio allocations: s0, b0 ∈ [0, e0], such that the total value of assets equal the initial
endowment (9). Given our assumptions, in equilibrium the portfolio allocation will be
interior (i.e., Us = Ub with s0, b0 > 0), thus we focus our analysis on this case.

All told, in equilibrium it must be that the two assets in period 0 yield the same expected
discounted utility, so the return to storage equals the return to lending to entrepreneurs,

Us(l0, ω̄, q1, θ) = Ub(l0, ω̄, q1, θ) .

For future reference we label the previous equation the investors’ break-even condition. Note
that the expected utility from investing in storage, Us, is not smaller than the expected
utility in financial autarky: Ua = δ(1 + r) + (1− δ)(1 + r)2, since the return of buying a bond
in the secondary market ∆ ≥ 1 + r.

2.5 Equilibrium

The equilibrium of the model is defined as follows.

Definition 1 (Competitive Equilibrium) We say that (l0, ω̄, θ, q1) is a competitive equilibrium
if and only if:

1. Given the outcome in the secondary market (θ, q1), the debt contract is described by (l0, ω̄)
that maximizes entrepreneurs’ return on equity subject to investors’ break-even condition.

2. Market liquidity corresponds to θ = (1 − δ)(1 + r)s0/q1/(δb0).

3. q1 is determined via the surplus sharing rule.

4. All agents have rational expectations about q1 and θ.

The equilibrium of the model is described by the entrepreneur’s choice of leverage,
l0, and risk, ω̄, to maximize the payoff of the risky investment project. Entrepreneurs’
profits are higher when l0 is higher and when the promised payout is lower, that is, when
ω̄ is lower. But entrepreneurs are constrained in their choices of l0 and ω̄ as they need to
offer terms that make financial contracts attractive to investors: the investors’ break-even
condition.

Entrepreneurs are aware that when selling in the secondary market, investors obtain a
price that depends on the contract characteristics. In fact, the price is determined via the
sharing rule (equation 8). Substituting the secondary market price in the expressions for
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the expected utilities of investing in storage and bonds (equations 13 and 14) we get

Us(θ) = δ(1 + r) + (1 − δ)(1 + r)
[
(1 − p(θ))(1 + r) + p(θ)∆

]
,

and Ub(l0, ω̄, θ) =
{
δ
[

f (θ)∆−1 + (1 − f (θ))β
]

+ (1 − δ)
}

Rb(l0, ω̄) .

It follows that the entrepreneur’s problem can be written as

max
l0,ω̄

[1 − Γ(ω̄)]Rkl0

subject to:
Us(θ) = Ub(l0, ω̄, θ) . (15)

Let λ be the multiplier on the break-even condition (15), then the entrepreneur’s
privately optimal choice of leverage is given by

[1 − Γ(ω̄)]Rk = −λ
∂Ub(l0, ω̄, θ)

∂l0
. (16)

That is, the marginal increase in profits from higher leverage for entrepreneurs need to
be proportional to the marginal reduction in expected utility of financial contracts for
investors.

Similarly, the privately optimal choice for the risk profile of corporate debt is given by

Γ′(ω̄)l0 = λ
∂Ub(l0, ω̄, θ)

∂ω̄
. (17)

That is, the marginal increase in profits from lower risk for entrepreneurs need to be
proportional to the marginal increase in expected utility of financial contracts for investors.

Taking a ratio of the equations (16) and (17) gives

1 − Γ(ω̄)
Γ′(ω̄)l0

= −
∂Ub(l0, ω̄, θ)/∂l0

∂Ub(l0, ω̄, θ)/∂ω̄
. (18)

This equation, which describes the privately optimal debt contract, taken together
with the investors’ break-even condition, given by equation (15), and the expressions that
characterize the secondary market (θ, q1) provide a complete description of the equilibrium
of the model.

Finally, note that both the price in the secondary market q1 and secondary market
liquidity θ can be expressed as a function of the characteristics of the optimal financial
contract (l0, ω̄). In fact, the price is a function of the expected return on holding the bond
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to maturity, Rb, which depends on (l0, ω̄); so we can write market liquidity as

θ =
(1 − δ)s0(1 + r)

δb0q1
=

(1 − δ)(1 + r)∆ (e0 − n0(l0 − 1))
δn0(l0 − 1)Rb(l0, ω̄)

. (19)

The following theorem establishes the existence and uniqueness of equilibrium in our
model.

Theorem 1 (Existence and Uniqueness of Competitive Equilibrium) Under the main-
tained assumptions there exists a unique competitive equilibrium of the model. Furthermore, in
the unique equilibrium credit is not rationed, i.e., Γ′(ω̄) − µG′(ω̄) > 0.

That is, ∃!(l0, ω̄, θ, q1) where the optimal contract in the primary market is described by (18),
the investors’ break-even condition (15) is satisfied, and both secondary market bond pricing and
liquidity are consistent with the decisions in primary markets, i.e., they are given by equations (8)
and (19), respectively.

As is the case in the canonical CSV model (e.g. Bernanke et al. 1999), the result
on existence follows from our assumptions. That is, we have assumed that the return
on the entrepreurs’ technology is better than the return on financial assets, including
the possibility of secondary market retrading, so entrepreneurs will always be able to
offer contractual terms that are attractive to investors. In contrast, while uniqueness is
relatively straightforward to establish in the CSV model, our framework is complicated by
the endogenity of liquidity. Nevertheless, we are able to establish that even in our setup
with feedback effects between outcomes in primary and secondary markets, multiple
equilibria do not obtain, which owes to the constant return to scale assumed in the
matching function.

3 Frictions and the (Ir)relevance of OTC Trade

It is useful to define a benchmark interest rate that is the return on a two-period bond that
could be traded in a perfectly liquid secondary market. Naturally, such a contract needs
to deliver the same return in expectation as a strategy of investing only in storage both in
the initial and interim periods.12 This gives rise to the following definition.

12No arbitrage under perfectly liquid markets implies that trading a two-period bond should yield the
same expected return for investors to rolling over one period safe investments, i.e. δ ·R`/(1+ r)+ (1−δ) ·R` =
δ · (1 + r) + (1 − δ) · (1 + r)2.
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Definition 2 (Liquid Two-period Rate) The liquid two-period rate is defined as the gross
interest rate on a perfectly liquid two-period bond.

R`
≡ (1 + r)2 .

The benchmark rate allows us to decompose the total gross return on the financial
contract written by the firm into a default and a liquidity premium. In order to do this,
express the total corporate bond premium as the gross return of the firm’s contract relative
to the benchmark rate, Z/R`. Then, this total premium is decomposed into a component
owing to default risk, Z/Rb, and a component owing to liquidity risk, Rb/R`. With this
decomposition, we have the following definitions for the default and liquidity premia,
respectively.

Definition 3 (Default and Liquidity Premia) The default premium Φd and the liquidity
premium Φ` on the firm’s debt contract are given by

Φd
≡

Z
Rb

and Φ`
≡

Rb

R`
.

Consequently, the total corporate premium is given by Φt
≡ Z/R` = Φd Φ`. These

definitions provide sharp characterizations of both the default and liquidity premia, which
are convenient to help trace out the underlying economic mechanisms in our model. The
relationship between the liquidity premium and the investors’ break-even condition, in
equilibrium, is described in the next remark.

Remark 1 (Investors Break-even Condition and Liquidity Premium) If investors correctly
expect the period 1 bond price to be determined via the sharing rule, then the investors’ break-even
condition (15) can be expressed as

(1 + r)2Φ` = Rb , (20)

with the liquidity premium being only a function of secondary market liquidity given by

Φ`(θ) =
1

1 + r
δ + (1 − δ)

[
(1 − p(θ))(1 + r) + p(θ)∆

]
δ
[

f (θ)∆−1 + (1 − f (θ))β
]
+ (1 − δ)

. (21)

Equation (21) provides an analytical characterization for the liquidity premium in
terms of only the secondary market liquidity. We defer the discussion of this relationship
after establishing Lemma 1 below.

On the other hand, the next proposition shows that the default premium, in equilib-
rium, is an increasing function of only the risk of the financial contract ω̄.
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Proposition 1 (Default Premium and Risk) Under the maintained assumptions, the default
premium, Φd, depends only on the risk of the financial contract, ω̄, and it is strictly increasing in
ω̄.

Intuitively, investors demand a higher default premium for financial contracts that are
more likely to default (i.e., contracts that are more risky, or specify a higher productivity
threshold ω̄ for paying out the full promised value). The more subtle part of the argument
is that leverage does not affect the default premium. This is due to the fact that, for a
fixed threshold level, ω̄, leverage affects both the face value of the contract, Z, and the
hold-to-maturity return for investors, Rb, in the same way. So leverage is irrelevant for
the default premium, as is the case in the benchmark CSV model, though leverage and
risk are jointly determined in equilibrium.

We now turn to our main results.

3.1 A Frictionless Benchmark

Our first result, stated in Proposition 2, establishes the conditions under which trade in
the secondary market is irrelevant, so that secondary OTC market liquidity has no bearing
on the firm’s optimal capital structure.

Proposition 2 (Irrelevance of OTC Trade) Under the following conditions, there is no liquidity
premium, i.e., Φ` = 1, implying that the model collapses to the benchmark costly state verification
model:

1. All investors are patient, so that δ = 0;

2. Impatient investors discount at rate β = 1/(1 + r);

3. Impatient investors extract their full value from all their sell orders in the secondary market,
which is true for ψ = 1 and {e0 ≥ ē0 : f (θ) = 1}; or

4. OTC trade is frictionless, which is true in the limit as ν → ∞ and patient investors have
deep pockets, i.e., n0 << e0(1 − δ).

The case in which δ = 0 is straightforward. When all investors are patient, there is no
need to trade in secondary markets; investors only care about the hold-to-maturity return.
Liquidity is not priced in financial contracts and the model collapses to the standard costly
state verification (CSV) setup presented in, for example, Townsend (1979) and Bernanke
and Gertler (1989).
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The same result obtains for the second case, though for different reasons. When
impatient investors discount future consumption at exactly the rate of return that comes
from holding a unit of storage, so that β = 1/(1 + r), they will be indifferent between
consuming in the final or interim period. This indifference implies that there are no gains
from OTC trade. In this case, the liquidity preference shock is immaterial and investors
only consider the hold-to-maturity return when buying financial contracts in primary
markets.

The third case considers the situation in which impatient investors can fully satisfy
their liquidity needs in secondary markets. That is, the terms of trade are set such that
impatient investors extract the entire surplus, i.e., ψ = 1, and all their sell orders will be
executed, given that f (θ) = 1. In this case, as before, liquidity considerations will not
factor in the lending decision of investors in primary markets. In turn, f (θ) = 1, requires
that there is enough storage at t = 1 that all sell orders can be satisfied, which requires
that investors’ endowment is sufficiently large. We derive this threshold for investors
endowment in the proof of Proposition 2 in the Appendix.

The final case considers the situation when trade in the secondary market is not
subject to trade frictions. In this case, investors are able to trade all their holdings. Since in
equilibrium investors need to be indifferent between bonds and storage ex-ante, it must be
that ∆ = Rb/(1 + r). Moreover, given that patient investors have deep pockets, it must also
be that they are indifferent between holding storage and trading bonds at t = 1, implying
that ∆ = 1 + r. Together, these imply that there is no liquidity premium, Φ` = 1, and the
model collapses to the benchmark CSV.13

3.2 OTC Trade in the Secondary Market

We now characterize the effects of frictional OTC trade. For the remainder of the paper,
we consider only the cases in which trading frictions in the secondary market result in
a non-negligible liquidity premium. That is, assume that (i) the probability of being an
early consumer is positive, δ > 0; (ii) impatient investors discount future consumption
strictly more than is implied by the storage rate, i.e., β < 1/(1 + r); (iii) impatient investors
cannot fully satisfy their liquidity needs in secondary markets, ψ < 1 or f (θ) < 1; and (iv)

13In the limiting case where ν → ∞, should we drop the assumption of patient investors’ deep pockets
there might not be excess liquidity at t = 1 and the bond price could be lower than Rb/(1 + r), as in cash-
in-the-market pricing models (e.g., Shleifer and Vishny, 1992). However, in our model without aggregate
uncertainty, we show the price will always reflect the valuation (indifference condition) of either patient or
impatient investors at t = 1. As a result, without the deep pockets assumption firm leverage initially will
be rationed by the available resources of investors.

22



OTC trade is frictional, and we restrict attention to the case where ν < 1.14

Under these assumptions we begin by establishing the link between imperfect liquidity
in the secondary market and the associated liquidity premium.

Lemma 1 (Secondary Market Liquidity and the Liquidity Premium) The liquidity pre-
mium, Φ`, or equivalently, the hold-to-maturity return, Rb, is a decreasing function of secondary
market liquidity, θ. Moreover, the elasticity of the liquidity premium, Φ`, with respect to secondary
market liquidity, θ, is lower than 1 in absolute value.

Lemma 1 formalizes the intuition that the price of liquidity risk (i.e., the liquidity
premium) is inversely proportional to the amount of liquidity in secondary OTC markets.
When secondary market liquidity, θ, is lower, investors require a higher liquidity pre-
mium, Φ`, or equivalently, a higher hold-to-maturity return, Rb. This relationship forms
the basis for the direct link between primary and secondary markets shown by the upper
arrow in Figure 1. In our model, market liquidity determines the likelihood that investors’
orders will be executed in an OTC trade. In particular, as the market becomes less liquid
sell orders will be more difficult to execute ( f (θ) decreases), and impatient investors will
have a harder time fulfilling their liquidity needs in secondary markets. By the same to-
ken, as liquidity declines buy orders are more likely to be executed (p(θ) increases) which
provides an incentive for investors to shift their portfolios out of illiquid bonds and into
storage. Both of these channels lead to a reduction in the demand for illiquid bonds in the
primary market and an increase in the price of liquidity.

In equilibrium, the firm naturally responds to higher funding costs by altering the
contract that it issues. A key contribution of this paper is to show that this, in turn, has
knock-on effects for liquidity in the secondary market (the lower arrow in Figure 1). This
transmission mechanism is summarized by the following remark.

Remark 2 (The Optimal Contract and Secondary Market Liquidity) Secondary market
liquidity, θ, is decreasing in leverage, l0, and the riskiness of the contract offered in the primary
market, ω̄.

Taken together with Lemma 1 this remark completes the feedback loop at the heart of
this paper. Intuitively, when investors require additional compensation to bear liquidity
risk, the firm has an incentive to alter the characteristics of the contract it offers in primary
markets, reducing leverage and risk. By doing this, the firm’s actions indirectly enhance
liquidity in the secondary market, attenuating the initial increase in the liquidity premium.
Similarly, an exogenous shock in the primary market will ripple through secondary market

14ν < 1 guarantees that p(θ), f (θ) < 1 for any θ.
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liquidity, affecting the liquidity premium, and thus, feeding back into the decisions in the
primary market.

Now we describe the effect of the parameters that determine demand and supply in
the primary market in the equilibrium of the model. We begin by describing the effect on
the demand for bonds.

Proposition 3 (Investors’ Bond Demand) Investors require a higher a higher liquidity pre-
mium, Φ`, and hence a higher hold-to-maturity return on the bond, Rb, when

1. (Liquidity shock) The probability of becoming impatient is higher, i.e., δ is higher;

2. (Impatience) Impatient investors discount the future more heavily, i.e., β is lower; and

3. (Endowments) Investors have less to invest in storage, i.e., e0 is lower.

The proposition describes how the parameters that describe investors’ preferences (δ
and β) and endowments (e0) affect demand in the primary market when the characteristics
of the financial contract (leverage and risk) are held constant. As investors’ preferences are
more sensitive to liquidity risk (δ is higher or β is lower), the associated liquidity premium
drives up the hold-to-maturity return that investors require to hold corporate debt. On
the other hand, when investors are poorer (e0 is smaller) they reduce their savings through
storage one-for-one conditional on buying the same number of financial contracts. Less
liquid savings reduces liquidity in secondary markets, and thus also drives up the required
hold-to-maturity return through an increase in the liquidity premium (Lemma 1).

The equilibrium implications for the optimal capital structure, considering the feed-
back loop with secondary market liquidity, are summarized in the following proposition.

Proposition 4 (Equilibrium Comparative Statics) In equilibrium, the firm’s leverage, l0, and
risk of the contracts it offers in the primary market, ω̄, both decrease when

1. (Liquidity shock) The probability of becoming impatient is higher, i.e., δ is higher;

2. (Impatience) Impatient investors discount the future more heavily, i.e., β is lower;

3. (Investors’ Endowments) Investors have less to invest in storage, i.e., e0 is lower; and

4. (Firms’ Endowments) Firms have more equity (i.e., n0 is higher).

This proposition presents the comparative statics in equilibrium for the parameters
that describe preferences and endowments for investors and firms. For the first three
cases, Proposition 3 establishes that an increase in δ or a decrease in β or e0 will push up
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the firm’s cost of funding through the liquidity premium. According to Proposition 4,
entrepreneurs adjust to this increase in the cost of funding along two margins (recall that
the debt contract is two-dimensional). They offer fewer contacts in the primary market
and the contracts that are offered are less risky relative to an equilibrium in which the
firm’s debt is traded with a lower liquidity premium. A reduction in the number of bonds
issued in the primary market lowers the number of possible sell orders in the secondary
market, which attenuates the increase in the liquidity premium. That is, the adjustment
of the firms’ optimal capital structure mitigates the effect of trading frictions on the price
of liquidity.

The fourth case of Proposition 4 deserves special attention. In the benchmark CSV
model, altering the firm’s endowment of equity has no impact on the characteristics of the
optimal contract. The reason is because, given an increase in equity, the firm expands it
size proportionally so that the optimal amount of leverage, l0 = k0/n0, remains unchanged.
This result does not carry through in our framework with endogenous secondary market
liquidity. As in the benchmark model—indeed, for exactly the same reason—there is
no direct effect of an increase in equity on the optimal contract. But our framework is
different in that an increase in equity raises the number of debt contracts issued in the
primary market. To see this consider the firm’s budget constraint expressed in terms of
leverage; b0 = n0(l0 − 1). In order for l0 to remain unchanged, the firm must increase
primary issuance in proportion to the size of the equity injection. But, this alters liquidity
because higher primary debt issuance raises the number of possible sell orders in the
secondary market and changing investors’ portfolio composition reduces the number of
potential buy orders. This leads investors to reprice the liquidity premium. Thus, in our
framework, the size of the corporate sector relative to the financial sector influences the
capital structure of the firm indirectly by altering secondary market liquidity. It is worth
noting that the model is homogeneous of degree zero in (n0, e0): increasing the size of the
corporate sector n0 and the financial sector e0 in the same proportions have no effect on
secondary market liquidity or the characteristics of the optimal contract.

Finally, we note that the link between the liquidity premium and the optimal capital
structure of the firm has the following corollary.

Corollary 1 (Default Premium Comparative Statics) In equilibrium, the default premium
Φd decreases when

1. (Liquidity shock) The probability of becoming impatient is higher, i.e., δ is higher;

2. (Impatience) Impatient investors discount the future more heavily, i.e., β is lower;
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3. (Investors’ Endowments) Investors have less to invest in storage, i.e., e0 is lower; and

4. (Firms’ Endowments) Firms have more equity, i.e., n0 is higher.

This corollary is a direct consequence of Propositions 1 and 4.

3.3 A Numerical Illustration

We present a simple numerical illustration using the following parameter values. We set
the initial endowment of entrepreneurs at n0 = 0.2 and the endowment of investors at
e0 = 1. Investors’ preferences are described by a discount factor for impatient investors
β = 0.85, while δ will take different values in [0, 1] to illustrate the results established
above. Entrepreneurs’ expected return is given by Rk = 1.2, whereas the return on storage
is assumed to be r = 0.01. The parameters of the matching function in the OTC market
are the scaling constant ν = 0.2 and the elasticity of the matching function with respect to
sell orders is α = 0.5. The surplus that accrues to impatient investors in the sharing rule
is ψ = 1. Idiosyncratic productivity shocks ω are distributed according to a log-normal
distribution with mean equal 1 and variance equal to 0.25. Finally, monitoring costs are a
share µ = 0.2 of firms’ revenue.

We begin with the frictionless benchmark, taking δ = 0.15 The equilibrium of the
model is described by entrepreneurs’ choice of leverage, l0, and risk, ω̄, subject to the
constraint imposed by investors’ break-even condition and the consistency requirements
for liquidity, θ, and price, q1, in the secondary market. The characteristics of the optimal
contract (l0, ω̄) determine the hold-to-maturity return, Rb, and thus the secondary market
price q1. (Recall that the return on executed orders in secondary markets is pinned down
by ψ, r, and β.) The optimal contract will determine the portfolio allocation of investors
and thus secondary market liquidity θ (equation 19). Thus, we use the (l0, ω̄)-space
to describe the optimal contract and the equilibrium of the model. Figure 4 depicts the
firm’s isoprofit curves in green.16 Investors’ break-even condition is shown by the red line.
Firm’s profits increase with leverage and decrease with risk, so isoprofit curves represent
higher profits moving south-east in the figure. The private equilibrum in the frictionless
benchmark economy is given by the tangency between the break-even condition and the
isoprofit line shown by the solid black dot in Figure 4.

15From Proposition 2 the frictionless benchmark is obtained if alternatively we set β = 1/1.01, or if ψ = 1
(as in our example) and e0 is sufficiently high so f (θ) = 1.

16Note that the shape of the isoprofit curves (increasing and concave) holds in general, as follows from
the properties of the Γ(ω̄) function, and does not depend on the particular values used in our example.
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Figure 5 illustrates the case of an increase in the liquidity shock, δ, (i.e., the case 1
of Propositions 3 and 4). As the probability of becoming impatient increases, investors
require a higher liquidity premium to compensate for liquidity risk (Proposition 3). In
contrast, the firm’s isoprofit lines for a given contract specified by (l0, ω̄) are invariant to
δ. Nevertheless, the firm adjusts the terms of the contract it offers in the primary market
owing to the increase in the liquidity premium. In particular, the firm reduces its supply
of primary debt, which partially compensates investors for the reduction in secondary
market liquidity. The resulting equilibrium has a lower level of leverage and a less risky
debt contract, as shown in Figure 5 (Proposition 4).

Finally, Figure 6 presents a decomposition of the total corporate premium Φt paid on
the primary debt contract in terms of the default premium Φd and the liquidity premium
Φ`. The figure shows that lower levels of leverage and risk due to increased liquidity
demand result in lower total corporate bond premia. Naturally, the liquidity premium
goes up, but the default premium decreases since the firm is offering a lower ω̄ (Corollary
1), and the latter effect dominates in this case.

4 The Efficient Structure of Corporate Debt

We analyze the efficient structure of corporate debt by considering a social planner con-
strained by the presence of matching frictions and the structure of trade in the secondary
market. Hence, our concept of efficiency is one of constrained efficiency, or second best.17

The planner chooses the optimal contract to maximize the profits of the firm while
internalizing the effect of the capital structure on secondary markets through liquidity
and bond prices. To formalize the planner’s problem let (l0, ω̄, θ, q1) be allocations that
describe the socially efficient outcome and let (lce

0 , ω̄
ce, θce, qce

1 ) be the allocations in the
competitive equilibrium described in section 3. Then, the planner’s problem can be
written as

max
ω̄,l0,θ,q1

[1 − Γ(ω̄)] Rkl0 (22)

subject to:
U(l0, ω̄, θ, q1) ≥ U(lce

0 , ω̄
ce, θce, qce

1 ) (23)

and equations (8) and (19).

17In the interest of space the analysis in sections 4 and 5 restricts attention to the more interesting case
where θ ∈ (θ, θ), so trading probabilities depend on the matching function (5) and are not pinned down by
the minimum number of buy or sell orders.
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Condition (23) says that the planner cannot choose equilibrium allocations that result in
lower welfare for investors compared to the competitive equilibrium, whereas equations
(8) and (19) force the planner to respect the determination of prices and liquidity, respec-
tively, in secondary markets.18 The social planning problem differs from the competitive
equilibrium in two respects: (1) the planner need not respect the investor’s break-even
condition (15), but may want to influence it to satisfy (23); and (2) the planner internalizes
how period 0 choices affect liquidity in the secondary market by explicitly considering
(19) as a constraint, which, in contrast, is an equilibrium condition in the competitive
economy.19

We substitute equations (8) and (19) in the planner’s problem, and letλbe the multiplier
on constraint (23), to obtain that the socially optimal choice of leverage is given by

[1 − Γ(ω̄)]Rk = −λ

[
n0(Ub −Us) + b0

∂Ub

∂l0
+
∂U
∂θ

∂θ
∂l0

]
. (24)

That is, the marginal increase in the firm’s profits from additional leverage needs to be
proportional to the marginal reduction in total expected utility for investors. The latter
has three components: (i) the portfolio composition effect: as leverage increases investors
need to re-allocate n0 units from storage to bonds; (ii) the effect on the expected utility
of bond holdings Ub; and (iii) the effect through secondary market liquidity: as liquidity
increases it becomes easier for impatient investors to sell their bonds, but it becomes more
difficult for patient investors to buy bonds and earn the return ∆ in the secondary market.

Similarly, the socially optimal choice for the risk profile of corporate debt is given by

l0Γ
′(ω̄)Rk = λ

[
b0
∂Ub

∂ω̄
+
∂U
∂θ

∂θ
∂ω̄

]
. (25)

That is, the marginal increase in the firm’s profits from reducing risk need to be
proportional to the marginal reduction in total expected utility for investors, which has
two components: the effect on the hold-to-maturity return Rb and the effect through
secondary market liquidity.

18We also considered a more general problem, as an alternative but not reported, where the planner can
additionally determine the terms of trade in the secondary market and assigns Pareto weights on the two
agents to maximize a social welfare function.

19Recall that investors, and thus firms, explicitly considered (8) in the competitive equilibrium as well,
thus its explicit consideration does not modify the planner’s problem relative to the competitive equilibrium,
unless the planner can affect the terms of secondary trade.
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Taking a ratio of equations (24) and (25) gives

1 − Γ(ω̄)
Γ′(ω̄)l0

= −
n0(Ub −Us) + b0

∂Ub
∂l0

+ ∂U
∂θ

∂θ
∂l0

b0
∂Ub
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

. (26)

This equation, together with the constraint on investors total expected utility (23), de-
scribes the socially optimal debt contract.20 We are ready to establish the generic ineffi-
ciency of the debt contract in competitive markets.21

Proposition 5 (Generic Constrained Inefficiency of the Debt Contract) Consider a planner
that designs an optimal debt contract, as described in (23), (26), (8) and (19). If the parameters
(α,ψ, r) belong to a generic set P, the planner will set a level of secondary market liquidity that
is different from the competitive equilibrium. That is, the competitive equilibrium is generically
constrained inefficient.

Given Proposition 5, we can identify two distorted margins that drive a set of wedges
between the private and socially efficient outcomes. Comparing the equilibrium condi-
tions (15) and (18) to the social planner’s counterparts (23) and (26), the first distortion is
evident from the ∂U/∂θ terms in equation (26) that does not appear in equation (18). This
term captures the liquidity externality. It arises because neither the firm nor investors
internalize the effect that their decisions in the primary market have on liquidity in the
secondary market. This generates a pecuniary externality as firms and investors decisions
affect the liquidity premium, which affects firms cost of financing and investors ability to
retrade illiquid assets.

To understand the role of ∂U/∂θ, which measures the effect of market liquidity on
investors ex ante welfare, consider the following reinterpretation of the conditions that
determine the optimal contract. Let the negative of risk measure the safety of the financial
contract. Then, firms profits are increasing in both leverage and safety, and the optimality
conditions can be reinterpreted as equating the marginal benefit with the marginal cost,
in terms of investors compensation, of increasing leverage or safety. Using this interpreta-
tion, the planner finds that a positive externality (∂U/∂θ > 0) increases the compensation
required to increase leverage and reduces the compensation required to increase safety.
Consequently, a planner that internalizes this externality would reduce leverage and risk
(increase safety), leading to higher secondary market liquidity and firm’s profits.

20The constraint will always be binding since the planner cares only about the firm, but this need not be
the case if the planner maximizes aggregate social welfare. In that case the planner may want to split the
aggregate gains according to some set of Pareto weights.

21See also Geanakoplos and Polemarchakis (1986) for a general characterization of constrained ineffi-
ciency.
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The second distortion appears in the optimal portfolio composition of investors. It can
be easily seen by comparing the weak Pareto improvement constraint (23) that the planner
faces to the break-even condition (15) in the competitive equilibrium, i.e., Ub = Us. Since
Us = Ua + (1−δ)(1+ r)(∆− (1+ r))p (θ), we can rewrite equation (23) as n0(l0−1) (Ub −Us) =

e0(1 − δ)(1 + r) (∆ − (1 + r))
[
p (θce) − p (θ)

]
. Written this way, the equation tells us that as

long as ∂U/∂θ , 0 the planner chooses a different level of market liquidity, so that θce , θ,
then Ub , Us. In this case, the expected return on holding bonds will not be equated with
the return to storage, as must be the case in the competitive equilibrium.

The following proposition summarizes the linkages between these two distortions.

Proposition 6 (Constrained Efficient Equilibrium) The constrained efficient allocations can
be characterized conditional on the model parameters (α, r, ψ) as follows:

• If ψ(1 + αr) > α(1 + r) then secondary market liquidity generates a positive externality on
investors (∂U/∂θ > 0); the planner implements a higher level of secondary market liquidity
(θ > θce); and the optimal capital structure of the firm is characterized by lower leverage,
l0 < lce

0 , and less risk, ω̄ < ω̄ce.

• If ψ(1 + αr) < α(1 + r) then secondary market liquidity generates a negative externality on
investors (∂U/∂θ < 0); the planner implements a lower level of secondary market liquidity
(θ < θce); and the optimal capital structure of the firm is characterized by higher leverage,
l0 > lce

0 , and more risk, ω̄ > ω̄ce.

• If ψ(1 + αr) = α(1 + r) then there is no externality (∂U/∂θ = 0) and equilibrium is
constrained efficient, i.e., (l0, ω̄, θ) = (lce

0 , ω̄
ce, θce).

To understand the intuition behind the proposition, consider for example the effect of
an increase in liquidity on investors’ welfare. On the one hand, an increase in liquidity
generates ex ante welfare gains for impatient investors simply because they will find it
easier to sell unwanted corporate debt in secondary markets. On the other hand, patient
investors suffer welfare loses as it becomes more difficult to earn a higher return by
purchasing bonds at a discounted price in the secondary market. Whether, in equilibrium,
investors are ex ante better off with higher liquidity depends on the parameters (α, r, ψ).

In particular, the gains to impatient investors outweigh the losses to patient investors,
making ex ante investors better off, when the trade surplus that accrues to impatient
investors is sufficiently large, such that ψ(1 + αr) > α(1 + r). In this case, we say the
liquidity externality is positive. Intuitively, the benefit of increased liquidity that accrues to
impatient investors from earning a larger share of the surplus more than outweigh the cost
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of reduced trading opportunities for patient investors. Alternatively, and equivalently, the
liquidity externality is positive when the private incentives to hold storage and provide
liquidity are low, that is when r < (ψ − α)/(α − αψ).

How can the planner implement a higher level of liquidity in a way that increases
the profitability of firms? Recall from equation (19) that liquidity can be expressed as a
function of the characteristics of the firm’s debt contract, θ(l0, ω̄). Furthermore, we know
∂θ/∂l0 < 0 and ∂θ/∂ω̄ < 0. So, from the firm’s perspective, the planner can increase
secondary market liquidity by directing the firm to take on less leverage, l0 < lce

0 , and
write debt contracts that are less risky, ω̄ < ω̄ce. Profitability increases because, despite the
reduction in scope owing to lower leverage, the firm reduces its overall cost of funding;
higher liquidity lowers the liquidity premium and the less risky nature of the debt contracts
lowers the default premium.22

Increasing liquidity in this way has, by design, implications for the portfolio compo-
sition of investors. Specifically, it requires that investors shift out of corporate bonds and
into storage. At the same time, increasing secondary market liquidity depresses the return
to storage (given that ∂p(θ)/∂θ < 0) and increases the return on bond holdings (given that
∂ f (θ)/∂θ > 0). So, investors are being asked to shift their portfolios out of higher return
corporate bonds and into storage, which offers a lower return. The only way such an
outcome can obtain is if the expected return for holding bonds in the more liquid portfolio
dominates the expected return from holding storage, so that (Ub > Us). In other words,
the only way to support allocations that deliver higher liquidity is to violate the breakeven
condition. The opposite intuition holds when ψ(1 + αr) < α(1 + r).

Finally, in the knife-edge case where ψ(1 + αr) = α(1 + r) private liquidity is efficient
so that at the margin an increase in liquidity generates gains for impatient investors
that are perfectly offset by losses to patient investors and the planner cannot exploit the
externality to improve upon the competitive equilibrium. This special case highlights the
relationship of our result with the well-known congestion externalities that arise due to
the matching function.23 But, the inefficiency of the private provision of liquidity in debt
markets that we describe is related to, but importantly different from, this well known
results. Here the key is the interaction between two externalities. On the investors’ side,
when they make their portfolio choice regarding primary debt they do not internalize the

22 It is interesting to note that by implementing higher secondary market liquidity, the planner in essence
increases funding liquidity in the primary market by implementing a reduction in the liquidity premium
and thus in the total bond premium.

23The parameter restriction is analogous to the Hosios (1990) rule that determines the efficient surplus
split in search and matching models of the labor market. Arseneau and Chugh (2012) study the implications
of inefficient surplus sharing for optimal labor taxation in a dynamic general equilibrium economy.
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congestion externality imposed on all investors participating in the secondary debt market.
The planer, in contrast, understands that by changing aggregate holdings of liquid assets
and affecting secondary market liquidity it can make investors ex ante better off. On the
firms’ side, when they make their borrowing decisions in the primary debt market they do
not internalize the pecuniary externality imposed on all firms through liquidity and default
premia. The planer, on the contrary, realizes that altering the aggregate size and risk of
debt issuance affects borrowing costs and increases firms’ profitability. In sum, our planner
generically wants to exploit the congestion externality to create surplus for investors ex
ante, which the planer redistributes to firms redesigning the optimal debt contract in the
primary market to account for the pecuniary externalities imposed through debt premia.
Thus, our result is driven by the interaction between a congestion externality among
investors (participants in the search-based OTC market) with a pecuniary externality
among firms (who do not participate in the OTC market).

4.1 Decentralizing the Efficient Equilibrium

A complete set of tax instruments allows us to decentralize the efficient equilibrium.
We introduce a marginal tax τs on the return from storage Us (τs < 0 corresponds to a
subsidy) and a marginal tax τl on leverage (τl < 0 corresponds to a subsidy). With these
tax instruments, the objective of investors becomes U = b0Ub + s0Us(1 − τs) + Ts and the
objective of the firm changes to [1 − Γ(ω̄)] Rkl0−τlλl0 + Tl. The taxes are funded in a lump-
sum fashion on the same agents, thus Tl = τlλl0 and Ts = τss0Us in equilibrium. Also, in
order to simplify the exposition note that we have normalized the tax on leverage by the
Lagrange multiplier, λ > 0, on the constraint faced by firms in the competitive economy
(i.e., the investor’s break-even condition).

Proposition 7 provides a general characterization of the optimal tax policy.

Proposition 7 (Optimal Policy) The planner’s solution can be decentralized by levying distor-
tionary taxes on the portfolio allocation decision of investors and the capital financing decision of
firms. The resulting optimal taxes on storage, τs, and leverage, τl, are given by:

τs =
e0

b0

(
1 −

Us(θce)
Us(θ)

)
, (27)

τl =
n0Us

∂Ub
∂ω̄ τ

s +
[
∂Ub
∂l0

∂θ
∂ω̄ −

∂Ub
∂ω̄

∂θ
∂l0

]
∂U
∂θ

b0
∂Ub
∂ω̄ + ∂θ

∂ω̄
∂U
∂θ

(28)

where the term in square brackets and the denominator in (28) are strictly positive.
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Combining the insights of Proposition 7 with Proposition 6 above, it is easy to charac-
terize the optimal tax system more specifically. When ψ(1 + αr) > α(1 + r), the liquidity
externality is positive so that the planner wants to implement higher liquidity relative to
the competitive equilibrium, θ > θce. Accordingly, the optimal tax system needs to be
designed in a way that results in investors holding a more liquid portfolio. This can be
achieved through a storage subsidy, so that τs < 0. Moreover, the optimal tax system
needs to be designed in a way that results in firms issuing fewer debt contracts in the
primary market, which can be achieved through a tax on leverage, so that τl > 0. By the
same logic, when ψ(1 +αr) < α(1 + r), the liquidity externality is negative and θ < θce. The
optimal tax system calls for a tax on storage, τs > 0, and a leverage subsidy, τl = 0. Only
in the knife-edge case where ψ(1 + αr) = α(1 + r) we have that τl = τs = 0.

4.2 A Numerical Illustration

We continue the numerical example in section 3.3. Recall that in this illustration, ψ = 1.
Moreover, because the planner has the same objective as the competitive firm, the isoprofits
lines are the same in both problems. Figure 7 shows the planner’s solution and the private
equilibrium for two cases: δ = 0 and δ = 0.1. In a frictionless environment (δ = 0), the
planner’s solution coincides with the private equilibrium (as we proved in Proposition
2). However, when there is a positive demand for liquidity, δ > 0 and β < (1 + r)−1, and
secondary market liquidity is not sufficiently high to guarantee f (θ) = 1, the planner
chooses lower leverage and a less risky capital structure, i.e., lower l0 and ω̄. The reason
is because the planner internalizes the effect of the leverage decision on liquidity in the
secondary market. This induces the planner to consider a steeper constraint compared to
the breakeven condition considered by competitive firms (where market liquidity is taken
as given). As a result, the planner understands how lower leverage and risk improves
borrowing terms on the margin, when the total social costs are taken into account.

Table 1 shows the change in equilibrium allocations between the competitive and
planner’s solutions for δ = 0.1 as ψmoves from 1 to 0. Consistent with the analysis above,
the planner’s allocations can be replicated using appropriate tax instruments (subsidies if
they are negative) on leverage and storage. For ψ = 1, the liquidity externality is positive
implying that liquidity is suboptimally low in the competitive equilibrium. The planner
would like to implement a tax on leverage to generate more liquidity in the secondary
market (in this case all the surplus goes to sellers so the tax on storage is irrelevant).
However, as the share of the gains from trade that accrues to impatient investors declines,
the size of the liquidity externality shrinks. Hence, the planner is less aggressive in
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choosing the optimal combination of leverage tax and storage subsidy, i.e., both τl and τs

shrink in absolute value. When the parameterization of ψ satisfies ψ(1 +αr) = α(1 + r), the
externality zeros out and the optimal tax system implies τl = τs = 0. For values ofψ below
that point, the liquidity externality becomes negative, so that liquidity is over-provided
in the competitive equilibrium. Accordingly, the sign of the optimal tax system flips so
that leverage is subsidized, τl < 0, and storage is taxed, τs > 0.

5 Quantitative Easing as part of the Optimal Policy Mix

Many central banks following the Great Recession of 2007-09 have turned to unconven-
tional monetary policies, such as quantitative easing (QE), to provide further monetary
accomodation after they reduced standard policy rates to its minimum feasible levels. Ul-
timately, the goal of QE is for the central bank to influence the real economy through direct
intervention in the markets for certain assets. Our model provides a stylized framework
to analyze the effect of these policies.

5.1 Quantitative Easing Policy

We model QE through direct purchases by the central bank of long-term illiquid assets
(the financial contracts issued by firms and which are retraded by investors in OTC
markets, much like Treasuries and Mortgage Backed Securities).24 These purchases are
financed by the issuance of short-term liquid liabilities, referred to as reserves, that offer
a return that is at least as large as that offered by the storage technology. This seems a
reasonable approximation for the policies implemented by the Federal Reserve during
the Great Recession, where lending facilities and asset purchases were financed primarily
with redeemable liabilities in the form of reserves (see Carpenter et al. 2013).

In period t = 0, and before markets open, the central bank announces the quantity of
bonds, b̄0, it will purchase in period 0 and will hold to maturity. These bond purchases
are financed through the issuance of s̄0 units of reserves that pay interest r̄ ≥ r. Thus, the
central bank budget constraint in period 0 is simply

b̄0 = s̄0 . (29)

We assume the central bank finances itself in period 1 with reserves only. This assump-
tion prevents the central bank from injecting additional resources into the economy in the

24Note that in the model a pool of firms’ contracts will have no aggregate risk.
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interim period. In order to keep its bond holdings, the central bank needs to roll over its
outstanding reserves and pay interest on them in period 1. The central bank will have to
borrow an amount equal to (1 + r̄)s̄0.25 Finally, in period 2 the central bank receives the
debt payout from the financial contract and expends (1 + r̄)2s̄0 in interest and principal on
outstanding reserves. It is assumed that the central bank allocates reserves evenly across
investors who demand reserves in a given time period.

The central bank faces three constraints that, taken together, serve to limit the size
of its QE program. First, we assume that the central bank is at a disadvantage relative
to the private sector in monitoring investment projects. It thus needs to pay a higher
monitoring cost relative to investors, denoted by µ̄ > µ.26 This implies that in expectation
the central bank anticipates receiving R̄bb̄0 for its asset holdings, with R̄b the expected
hold-to-maturity return on financial contracts for the central bank, given by

R̄b(l0, ω̄) =
l0

l0 − 1
Rk [Γ(ω̄) − µ̄G(ω̄)

]
= Rb(l0, ω̄) −

l0

l0 − 1
Rk(µ̄ − µ)G(ω̄) .

Second, the central bank needs to fully finance its funding cost, i.e., the total interest
on reserves, with its expected return on assets. That is,

R̄b
≥ (1 + r̄)2 . (30)

Finally, we assume that investors cannot be made worse off by QE, as we describe in
section 5.3.

5.2 Investors’ Problem and Liquidity with QE

In period 0 investors allocate their wealth across three assets: the storage technology, debt
contracts, and reserves. So the budget constraint at t = 0 is given by

s0 + s̄0 + b0 = e0 ,

with s0, s̄0, b0 ≥ 0. Following the approach of Section 2, we consider the optimal behavior
of impatient and patient investors in t = 1 when they arrive with a generic portfolio of

25In practice, the long-term assets held by central banks pay interest in the interim period, and in an
environment of low short-term interest rates these holdings will generate a positive net-interest income for
the central bank. But for simplicity we abstract from these considerations. See, for instance, Carpenter et
al. (2013) for estimates of net-interest income for the Federal Reserve.

26Consequently, any positive effects of QE would not accrue from enhanced monitoring, as in the
delegated monitoring models of Diamond (1984) and Krasa and Villamil (1992), but from its effect on
liquidity premia.
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storage, reserves, and bonds (s0, s̄0, b0).

Impatient Investors. By Assumption 3 impatient investors want to consume all their
wealth at t = 1. They can consume the payouts of their liquid assets: (1 + r)s0 + (1 + r̄)s̄0; in
addition, they can consume the proceeds from their sell orders in the OTC market: q1 units
of consumption for each order executed. Thus, the expected consumption of impatient
investors in periods 1 and 2, respectively, is given by

cI
1 = (1 + r)s0 + (1 + r̄)s̄0 + f (θ)q1b0 , (31)

and cI
2 = (1 − f (θ))Rbb0 . (32)

Patient Investors. Patient investors only value consumption in the final period and, as a
result, are willing to place buy orders in the OTC market because the return from doing so,
∆, is strictly greater than the return on storage, 1 + r. Moreover, it is also the case that the
return on reserves, 1+r̄, is at least as large as that on storage, so patient investors are willing
to allocate liquid wealth to reserves. Accordingly, liquidity provision in the secondary
market will depend on the return on OTC trade, ∆, relative to the return on reserves,
1 + r̄. Specifically, if 1 + r̄ < ∆ patient investors will pledge all their liquid wealth to place
buy orders in the OTC market. On the other hand, if 1 + r̄ > ∆ patient investors will use
their liquid wealth to buy higher yielding reserves first and then allocate the remainder of
their liquid wealth to placing buy orders in the OTC market. For expositional purposes,
we assume throughout the remainder of the paper that 1 + r̄ < ∆ (although for the main
results of this section—stated below in Propositions 8 and 9—we trace out the proofs over
the entire parameter space of the model, where appropriate).

When the anticipated return to OTC trade exceeds the return on reserves, patient
investors use (1 + r)s0 + (1 + r̄)s̄0 units of liquid wealth to place buy orders. A fraction
p(θ) are matched allowing patient investors to exchange liquid wealth for corporate debt,
while the 1 − p(θ) unmatched portion needs to be reinvested in liquid assets in period
t = 1. Because the central bank needs to finance itself in the interim period, it removes a
total of (1+ r̄)s̄0 reserves from a mass 1−δ of patient investors. Individual reserve holdings
in the interim period for patient investors, s̄P

1 , totals (1 + r̄)s̄0/(1 − δ). All remaining liquid
funds are placed into the lower yielding storage technology, so expected storage holdings
at the end of t = 1, sP

1 , equal

sP
1 = (1 − p(θ)) [(1 + r)s0 + (1 + r̄)s̄0] −

(1 + r̄)s̄0

1 − δ
,
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which is strictly positive from Assumption 4. It follows that expected consumption of
patient investors equals

cP
2 = sP

1 (1 + r) +
(1 + r̄)2s̄0

1 − δ
+

{
b0 + p(θ)

(1 + r)s0 + (1 + r̄)s̄0

q1

}
Rb . (33)

Using the optimal behavior of investors in period 1, summarized in equations (31)-
(33), we can rewrite the expected lifetime utility as the portfolio weighted average of the
utilities of the three assets available in the initial period:

U = Uss0 + Us̄s̄0 + Ubb0 .

As before, the expected utility of investing in storage and bonds, Us and Ub, are given by
equations (13) and (14), respectively. On the other hand, the expected utility of reserves is
given by

Us̄ = δ(1 + r̄) + (1 − δ)(1 + r̄)
[
(1 − p(θ))(1 + r) +

r̄ − r
1 − δ

+ p(θ)∆
]
. (34)

Reserves yield 1 + r̄ for impatient investors. For patient investors, there is additional
compensation that comes from the expected return from buy orders in the secondary
market, plus the spread between reserves and storage, r̄ − r, for the additional reserves
bought in period 1.27

We are now ready to establish the link between QE and secondary market liquidity.

Proposition 8 (The Real Effects of Quantitative Easing) Quantitative easing, i.e., the size of
the bond buying program, b̄0, increases secondary market liquidity θ and, hence, has implications
for the firm’s optimal capital structure and investment.

The intuition behind this result is straightforward, each bond bought by the central
bank will be held to maturity, reducing the number of sell orders in the secondary market.
At the same time, these bonds need to be financed with reserves, which patient investors
can use to submit additional buy orders in the secondary market. So, a bond buying
program affects secondary market liquidity directly through the purchase of bonds as well
as indirectly through the liquidity created by issuing central bank reserves. Moreover, Re-
mark 2 establishes an equilibrium link between liquidity and the optimal capital structure
of the firm, which determines investment by the firm.

27If, 1 + r̄ > ∆, patient investors will use their liquid wealth first to buy reserves, and then will use their
remaining liquid wealth to place buy orders in the OTC market. Proceeding as above we can derive for
patient investors sP

1 , cP
2 , and Us̄.
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5.3 QE and Optimal Policy

To understand the role of QE in the optimal policy mix, we consider a planner who
wants to maximize firm profits, but is restricted by the central bank budget constraint,
equation (29), and the financing constraint, equation (30). In addition, as with the planner
in Section 4, we assume the QE program cannot make investors worse off. To write this
later constraint, let U(l0, ω̄, θ, b̄0, r̄) be the expected lifetime utility of investors when the
equilibrium is described by (l0, ω̄, θ), with the secondary market price given by (8), and
the QE program described by (b̄0, r̄). Similarly, let U(lce

0 , ω̄
ce, θce) be the expected lifetime

utility of investors in the competitive equilibrium, when the secondary market price is
given by (8). We refer to this planner that have access to QE policies as the central bank.
Then, the central bank’s problem can be written as

max
l0,ω̄,θ,b̄0,r̄

[1 − Γ(ω̄)] Rkl0 (35)

subject to:
U(l0, ω̄, θ, b̄0, r̄) ≥ U(lce

0 , ω̄
ce, θce) (36)

and equations (19), (29) and (30).
The following proposition characterizes the role of QE as part of the optimal policy

mix.

Proposition 9 (Quantitative Easing as Part of the Optimal Policy Mix) The optimal design
of QE conditional on the model parameters (α, r, ψ) is described as follows:

• If ψ(1 + αr) > α(1 + r) , then QE improves upon the constrained efficient allocation; the
optimal QE program consists of a positive bond buying program, b̄0 > 0, and paying interest
on reserves that are strictly greater than the return on storage, r̄ > r.

• If ψ(1 + αr) ≤ α(1 + r) , then QE does not improve upon the constrained efficient allocation;
the optimal QE program is just b̄0 = 0 and r̄ = r.

As long as the liquidity externality is positive (liquidity is suboptimally low in the
private equilibrium), a QE program can lead to a Pareto improvement over the constrained
efficient allocations studied in Section 4. The reason this is possible is because the central
bank can finance its purchases of long-term illiquid corporate debt by issuing liquid
liabilities to investors subject to liquidity risk, much like a deposit contract offered by
banks. The central bank has an advantage over a typical bank, however, in that it is
not subject to runs by investors. In this sense, a central bank that is not subject to
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liquidity risk effectively enhances the intermediation technology of the economy. This
technological improvement can only be realized when there are social gains from raising
liquidity. When the liquidity externality is negative (liquidity is suboptimally high in the
competitive equilibrium), QE is ineffective because the central bank cannot take a short
position in the primary corporate debt market.

It is useful to point out that the proposition suggests QE is effective when the interest
rate on storage is sufficiently low, r < ψ/(1 + α − αψ).28 Although it is beyond the scope
of this model, these conditions indicate that QE may be an effective policy response in a
protracted low interest rate environment.

The other issue worth mentioning is that when QE is effective, the absence of constraints
that limit the size of the program could lead to an extreme outcome in which the central
bank disintermediates the bond market. That is, if there is nothing holding back the size
of the program, as long as QE is effective, the optimal policy is for the central bank to
buy all the bonds offered by the firm and offer the corresponding amount of reserves
to investors, paying r̄ = r. Doing so allows the central bank to replicate the frictionless
benchmark of section 3.1. However, as mentioned above, the size of the QE program is
limited in our model by: (1) the higher monitoring cost that the central bank pays relative
to investors; (2) the fact that the expected return on assets cannot be lower than the total
cost of reserves; and (3) investors cannot be made worse off.

5.4 A Numerical Illustration

Table 2 extends our numerical example to study QE. The table shows the changes in
allocations relative to the competitive equilibrium for three different economies. The first
column shows the decentralization of the socially efficient outcomes without QE (through
the leverage tax, τl, and storage subsidy, τs). The second column shows the effects of
QE by itself. Finally, the third column shows QE in conjunction with optimal tax policy.
All cases assume the parameterization α = 0.5, ψ = 0.9, and r = 0.01. We choose this
parameterization because it puts the model in a region of the parameter space where QE
is effective, as per proposition 9. In addition, we assume that µ̄ = 0.3, which is 50% higher
than the baseline value of µ = 0.2.

The first column (which, for reference, corresponds to a point half way between the
results shown in the first and second columns of table 1) shows that in absence of QE, the
efficient allocation is decentralized with a leverage tax, τl = 0.21, and a modest subsidy for
storage, τs = −0.04. By raising liquidity in the secondary market, and hence depressing

28Alternatively, ψ > α(1 + r)/(1 + αr) or α < ψ/(1 + r − rψ).
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the liquidity premium, the resulting reduction in funding costs raises profits by 0.14%
relative to the competitive equilibrium, leaving the utility of investors unchanged. The
second column presents results where we shut down the tax system, but allow the planner
access to a QE program. Even when we shut down the tax system, so that τl = τs = 0,
the planner can use QE to achieve an even greater increase in firm profitability without
harming investors. The central bank is able to improve the intermediation technology in
the economy by directly intermediating credit in the primary market, and financing its
bond purchases through the issuance of reserves (upon which the central bank must pay
investors a premium above the return on storage). With QE the planner can achieve a
similar outcome in terms of liquidity, without tax instruments. Finally, the last column
of the table shows that QE, by itself, is not a panacea. A planner can do even better by
implementing QE in conjunction with tax policy. The way to interpret this last result is
that although QE improves the intermediation technology in the economy, it does nothing
to remove the underlying distortions, arising from the liquidity externality.

Figure 8 shows how the gains to the firm vary with ψ for different levels of the
efficiency of the central bank monitoring technology. The thick lines show the case for
µ̄ = 0.3 assuming QE in conjunction with the optimal tax system (the thick solid line) and,
alternatively, assuming QE alone with no supporting tax system (the thick dashed line).
The thin solid and dashed lines correspond to the same information when the monitoring
cost is lower, so that µ̄ = 0.2. Finally, the thin dotted line shows the gains to the firm
from optimal tax policy alone in absence of QE. There are four things to take from the
figure. First, QE is always more effective when combined with the optimal tax policy (the
solid lines are always above the dashed line for the same monitoring cost assumption).
Second, the effectiveness of QE is limited by the parameterization of ψ (the dashed lines
are downward sloping), so that as the gains from trade that accrue to impatient investors
decline, QE becomes less effective. Third, the effectiveness of QE depends importantly on
the quality of the central bank’s monitoring technology (the thick lines are below the thin
ones, so the worse the technology, the less effective is QE). Finally, there are parts of the
parameter space in which QE is ineffective to the point at which a planner would strictly
prefer optimal taxation to QE (the regions in which the thick and thin dashed lines lie
below the thin dotted line).

6 Conclusion

We present a model of secondary market liquidity determination, where trade frictions
ineract with limited liquid assets available in financial markets. Economic decisions in the
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primary market determine both the productive firms’ capital structure and the available
liquid assets that will support frictional trade in illiquid markets. This interaction creates
a feedback loop between secondary market liquidity and firm’s financing decisions in
primary capital markets. We show that imperfect secondary market liquidity accruing
from search frictions results in positive liquidity premia, lower levels of leverage—or
equivalently lower debt issuance—and less credit risk in primary markets.

Furthermore, this feedback loop creates externalities operating via secondary market
liquidity, as private agents do not internalize how their borrowing and liquidity provision
decisions affect secondary market liquidity. This externality changes the trade-off between
risk and leverage and generically makes the competitive equilibrium constrained ineffi-
cient. We show how efficiency can be restored by correcting two distorted margins: one
on firms and one on investors. We consider distortionary taxes to correct these distorted
margins, but other instruments such as leverage or portfolio restrictions could also be
considered (see also Perotti and Suarez, 2011, who propose Pigouvian taxation to address
externalities from the under-provision of liquidity).

In our model liquidity holdings by investors can be either too low or too high relative
to the efficient level, with borrowing by firms being too high or too low, respectively.
This inefficiency arises as both type of agents fail to internalize how they affect secondary
market liquidity. The result is similar to other results in the literature of over-borrowing
and liquidity under-supply. However, our result has different policy prescriptions as two
policy tools tools are needed to restore efficiency. This contrasts with previous results,
which have just focused on one of these inefficiencies (Fostel and Geanakoplos, 2008;
Farhi, Golosov and Tsyvinski, 2009); or where borrowers are also liquidity providers
and one policy instrument is enough to restore efficiency (Holmström and Tirole, 1998;
Caballero and Krishnamurthy, 2001; Lorenzoni, 2008; Jeanne and Korinek, 2010; Bianchi,
2011). Our result also highlights the possibility of liquidity over-provision as emphasized
by Hart and Zingales (2015) considering a different mechanism.

Finally, we show how unconventional policies like quantitative easing are expected
to affect both secondary market liquidity and debt issuance in primary capital markets.
By substituting illiquid assets for liquid short-term securities, these policies increase the
intermediation capacity of the economy, and under some circumstances may lead to an
improvement on the productive capacity of the economy. Our analysis suggests that these
type of policies ought to be implemented in conjunction with policies to limit corporate
borrowing.

Our model suggest a set of testable predictions for the relationship between the avail-
ability of short-term liquid assets and liquidity premia. In our model there is only one set
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of investors who participate in OTC markets, but in practice there are many, potentially
segmented OTC markets. In this context, the intuition of our model will predict that liq-
uidity premia for a given asset, should be inversely related to the liquidity of the portfolio
of the participants in the OTC market for that asset. Along these lines, our model predicts
that quantitative easing financed with bank reserves should have an effect on the liquidity
premia of all the securities traded in OTC markets where banks are relevant participants,
not only affecting the liquidity premia of illiquid assets purchased by central banks.

This paper leaves open questions that we are taking on future work. First, we would
like to explore the quantitative relevance of the mechanisms described herein. For that we
have deliberately stayed very close to the quantitative model of Bernanke et al. (1999), and
we are planning to explore the quantitative prescriptions of our model. Second, in practice
many different assets are traded in OTC markets, a dimension that we have abstracted
from in our analysis but seems important in practice. Future work should explore the
relationship between market segmentation in OTC trade and secondary market liquidity
(Vayanos and Wang, 2007; Vayanos and Weill, 2008). Two important considerations that
we abstracted from will have to be accounted for in this work: what are the strategic
incentives in such an environment?, and, how is liquidity allocated across these markets?
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Appendix

A Proofs

Proof of Theorem 1: We need to show that there is a unique equilibrium, and that in this
equilibrium credit is not rationed. For that, first, we rule out credit rationing equilibria (Part 1).
Then, we establish existence of a non-rationed equilibria (Parts 2-3). Finally, we establish the
uniqueness (Part 4).

Part 1. Rule out credit rationing equilibrium.
First of all, note that from Assumption 2, ω̄dF(ω̄)/(1 − F(ω̄)), is increasing so

1 = µ
ω̄dF(ω̄)
1 − F(ω̄)

has only one root, which is strictly positive and is denoted by ¯̄ω > 0.
Note that from the definition of Γ(ω) and G(ω) it follows that for ω̄ > 0

Γ(ω̄) > 0 , 1 − Γ(ω̄) = P(ω ≥ ω̄)E[ω − ω̄|ω ≥ ω̄] > 0

1 > Γ′(ω̄) = 1 − F(ω̄) > 0 , Γ′′(ω̄) = −dF(ω̄) < 0

0 < G(ω̄) < 1 , µG(ω̄) < G(ω̄) < Γ(ω̄)

G′(ω̄) = ω̄dF(ω̄) > 0 , G′′(ω̄) = dF(ω̄) + ω̄
d(dF(ω̄))

dω̄

lim
ω̄→0

Γ(ω̄) = 0 , lim
ω̄→∞

Γ(ω̄) = ω̄P(ω ≥ ω̄) + P(ω < ω̄)E[ω|ω < ω̄] = 1

lim
ω̄→0

G(ω̄) = 0 and lim
ω̄→∞

G(ω̄) = 1

(A.1)

Then

Γ′(ω̄) − µG′(ω̄) = (1 − F(ω̄))
(
1 − µ

ω̄dF(ω̄)
1 − F(ω̄)

) 
> 0 if ω̄ < ¯̄ω
= 0 if ω̄ = ¯̄ω
< 0 if ω̄ > ¯̄ω

.

On the other hand, the investors break-even condition (15) defines a relationship between risk
ω̄ and leverage l0 that we can characterize for given market liquidity, θ, as follows. Let ω̄ibec(l0) be
the correspondence that gives the values of risk compatible with the break-even condition for a
level of leverage, then these values of risk are implicitly defined by

Us(θ) = ub(θ)Rb
[
l0, ω̄ibec(l0)

]
,

where ub(θ) ≡ δ
[

f (θ)∆−1 + (1 − f (θ))β
]

+ (1 − δ).
Since investors and the firm take secondary market liquidity, θ, as given, applying the Implicit

Function Theorem for any ω̄ , ¯̄ω we have that
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dω̄ibec

dl0
= −

∂Ub
∂l0
∂Ub
∂ω̄

= −

∂Rb

∂l0
∂Rb

∂ω̄

. (A.2)

In fact, from equation (4) we have that

∂Rb

∂l0
= −

Rb

l0(l0 − 1)
< 0 and

∂Rb

∂ω̄
=

Rb[Γ′(ω̄) − µG′(ω̄)]
Γ(ω̄) − µG(ω̄)

, (A.3)

so we can apply the Implicit Function Theorem for ω̄ , ¯̄ω. It follows that the firm will never
choose a contract with risk ω̄ > ¯̄ω, as firm profits are decreasing in ω̄, and for ω̄ > ¯̄ω additional risk
will reduce the return to investors and they will not be willing to extend additional credit (higher
leverage) at these higher risk levels.

An equilibrium with ω̄ = ¯̄ω constitutes a credit rationing equilibrium, since the firm cannot
increase leverage by increasing the risk of the contract. We want to rule out that such an equilibrium
exists. Note that using a similar argument as above we have that for a fixed θ there exists a
function libec

0 (ω̄) that gives the single value of leverage consistent with the break-even condition.
Let ¯̄l0 = libec

0 ( ¯̄ω) > 0, then there are three potential types of credit rationing equilibria: (i) l0 < ¯̄l0; (ii)
l0 = ¯̄l0; and (iii) l0 > ¯̄l0.

Suppose in equilibrium the firm chooses (l0, ¯̄ω) with l0 < ¯̄l0. Since
(¯̄l0, ¯̄ω

)
satisfies the IBEC,

it must be that ub(θ)Rb(l0, ¯̄ω) > Us(θ) from equation (A.3). But then the firm can do better by
lowering (increasing) the risk of the contract (leverage), while still offering enough compensation
to investors to hold bonds, so this cannot be an equilibrium. On the other hand, if equilibrium is
described by (l0, ¯̄ω) with l0 > ¯̄l0, then ub(θ)Rb(l0, ¯̄ω) < Us(θ). Then, investors at t = 0 will allocate
all their wealth to storage, which is a contradiction with ¯̄l0 > 0.

Finally, consider the case where the equilibrium is given by (¯̄l0, ¯̄ω). This contract is suboptimal
for the firm as

Γ′( ¯̄ω) = (1 − F( ¯̄ω)) > 0 ,

which is incompatible with the optimality conditions (16) and (17). Intuitively, the firm can give
up an infinitesimal amount of leverage for an infinite reduction of risk, so it will never choose
these contract terms in equilibrium.

Part 2. Rewrite the equilibrium conditions as a single-valued equationH(ω̄).
Note that from equation (18), which characterizes the optimal contract in a non-rationing

equilibrium, we can rearrange to get

l0(ω̄) = 1 +
Γ(ω̄) − µG(ω̄)

1 − Γ(ω̄)
Γ′(ω̄)

Γ′(ω̄) − µG′(ω̄)
. (A.4)

In addition, note that from equation (19) we have

θ(ω̄) = θ(l0(ω̄), ω̄) =
(1 − δ)(1 + r)∆ (e0 − n0(l0(ω̄) − 1))

δRb(l0(ω̄), ω̄)n0(l0(ω̄) − 1)
. (A.5)

Finally, using equations (A.4) and (A.5) we can express the break-even condition as the zero of the
functionH(ω̄), defined by

H(ω̄) = Us(θ(ω̄)) − ub(θ(ω̄))Rb(l0(ω̄), ω̄) , (A.6)
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Part 3. Existence of a non-credit rationing equilibrium.
Want to show that H(ω̄) as a zero in (0, ¯̄ω). But since H(ω̄) is continuous, it suffices to show

thatH(0) < 0 andH( ¯̄ω) > 0.
Consider first the case ω̄ = 0. From equation (A.4) we have that l0(0) = 1, and differentiating

equation (A.4) we get

dl0
dω̄

=
Γ′(ω̄)

1 − Γ(ω̄)
+

Γ(ω̄) − µG(ω̄)
[1 − Γ(ω̄)][Γ′(ω̄) − µG′(ω̄)]

{
[Γ′(ω̄)]2

1 − Γ(ω̄)
+
µ[Γ′(ω̄)G′′(ω̄) − Γ′′(ω̄)G′(ω̄)]

Γ′(ω̄) − µG′(ω̄)

}
, (A.7)

so l′0(0) = 1. Also, Γ′(0) = 1 and G′(0) = 0, thus from equation (4), limω̄→0 Rb(ω̄) equals

lim
ω̄→0

l0(ω̄)
l0(ω̄) − 1

Rk[Γ(ω̄) − µG(ω̄)] = lim
ω̄→0

Rk l′0(ω̄)[Γ(ω̄) − µG(ω̄)] + l0(ω̄)[Γ′(ω̄) − µG′(ω̄)]

l′0(ω̄)
= Rk .

In addition, from equation (A.5) we have

lim
ω̄→0

θ(ω̄) = lim
ω̄→0

(1 − δ)(1 + r)∆ (e0 − n0(l0(ω̄) − 1))
δRb(ω̄)n0(l0(ω̄) − 1)

= ∞ .

This imply that p(θ) = 0 and f (θ) = 1, and thus

H(0) = δ(1 + r) + (1 − δ)(1 + r)2
− Rk

[
δ∆−1 + 1 − δ

]
= δ

[
(1 + r) − Rk∆−1

]
+ (1 − δ)

[
(1 + r)2

− Rk
]
< 0 ,

where the inequality follows from Assumption 1.
Consider now the case ω̄ = ¯̄ω, in this case from equation (A.4) we have that

lim
ω̄→ ¯̄ω

l0(ω̄) = lim
ω̄→ ¯̄ω

1 +
Γ(ω̄) − µG(ω̄)

1 − Γ(ω̄)
Γ′(ω̄)

Γ′(ω̄) − µG′(ω̄)
= ∞ .

In addition, from equation (4)

lim
ω̄→ ¯̄ω

Rb(ω̄) = lim
ω̄→ ¯̄ω

1
1 − 1/l0(ω̄)

Rk[Γ(ω̄) − µG(ω̄)] = Rk[Γ( ¯̄ω) − µG( ¯̄ω)] .

Furthermore, if leverage diverges then investors are allocating all their wealth to bonds and none
to storage, so s0( ¯̄ω) = 0, then it follows from equation (A.5) that

lim
ω̄→ ¯̄ω

θ(ω̄) = lim
ω̄→ ¯̄ω

(1 − δ)(1 + r)∆s0(ω̄)
δRb(ω̄)n0(l0(ω̄) − 1)

= 0 .

This imply that p(θ) = 1 and f (θ) = 0, and thus

H( ¯̄ω) = δ(1 + r) + (1 − δ)(1 + r)∆ −
[
δβ + 1 − δ

]
Rk[Γ( ¯̄ω) − µG( ¯̄ω)] .

To show thatH( ¯̄ω) > 0 we proceed by contradiction. Suppose that

δ(1 + r) + (1 − δ)(1 + r)∆ <
[
δβ + 1 − δ

]
Rk[Γ( ¯̄ω) − µG( ¯̄ω)] .

Then, at ω̄ = ¯̄ω a portfolio with s0 = 0 and b0 = e0 is optimal for investors, since in this case the

48



hold-to-maturity return of bonds, Rb = (e0 +n0)/e0 Rk[Γ( ¯̄ω)−µG( ¯̄ω)] > Rk[Γ( ¯̄ω)−µG( ¯̄ω)]. Moreover,
with this portfolio allocation liquidity equals zero, so the previous inequalities capture the return
on storage and bond investments. So we have found an equilibrium with credit rationing, ω̄ = ¯̄ω,
which is a contradiction. Thus, we conclude that

δ(1 + r) + (1 − δ)(1 + r)∆ <
[
δβ + 1 − δ

]
Rk[Γ( ¯̄ω) − µG( ¯̄ω)] ,

andH( ¯̄ω) > 0.

Part 4. Uniqueness: Show thatH(ω̄) is strictly increasing in (0, ¯̄ω).
Differentiating equation (A.6) we obtain

dH(ω̄)
dω̄

=
dUs(θ(ω̄))

dθ
dθ(ω̄)

dω̄

−
dub(θ(ω̄))

dθ
dθ(ω̄)

dω̄
Rb(l0(ω̄), ω̄) − ub(θ(ω̄))

[
∂Rb(l0(ω̄), ω̄)

∂l0
dl0(ω̄)

dω̄
+
∂Rb(l0(ω̄), ω̄)

∂ω̄

]
,

To sign this derivative note that

dUs

dθ
= (1 − δ)(1 + r)p′(θ) [∆ − (1 + r)] ≤ 0 ,

and
dub

dθ
= δ f ′(θ)

[
∆−1
− β

]
≥ 0 .

where the inequalities follow from p′(θ) ≤ 0, f ′(θ) ≥ 0, and (1 + r) ≤ ∆ ≤ β−1.
Note that we can express

dθ
dω̄

=
∂θ
∂l0

dl0
dω̄

+
∂θ
∂ω̄

< 0 . (A.8)

In fact, from the definition of θ, equation (19), and equation (A.3) we have that

∂θ
∂l0

= −
θ (e0 + n0)

l0 (e0 − n0(l0 − 1))
< 0 and

∂θ
∂ω̄

= −
θ[Γ′(ω̄) − µG′(ω̄)]

Γ(ω̄) − µG(ω̄)
< 0 , (A.9)

where the first inequality follows from Assumption 4, whereas the second inequality follows from
ω̄ < ¯̄ω. Moreover, from Assumption 2 for ω̄ < ¯̄ω, dl0/dω̄ > 0. In fact, evaluating equation (A.7) and
using that Γ′(ω̄) − µG′(ω̄) > 0 for ω̄ < ¯̄ω; Γ′(ω̄)G′′(ω̄) − Γ′′(ω̄)G′(ω̄) =

d(ω̄h(ω̄))
dω̄ (1 − F(ω̄))2 > 0 from

Assumption 2; and Γ′(ω̄) > 0 and Γ(ω̄) < 1 from (A.1). Therefore, dθ/dω̄ < 0.
It is just left to show that

∂Rb

∂l0
dl0
dω̄

+
∂Rb

∂ω̄
< 0 , (A.10)

which is the case iff

1
l0

dl0
dω̄

> (l0 − 1)
Γ′(ω̄) − µG′(ω̄)
Γ(ω̄) − µG(ω̄)

=
Γ′(ω̄)

1 − Γ(ω̄)
⇔

1 − Γ(ω̄)
Γ′(ω̄)

dl0
dω̄
− l0 > 0 .

Substituting in the expressions for l0(ω̄) and dl0
dω̄ from equations (A.4) and (A.7) we get
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1 +
Γ(ω̄) − µG(ω̄)

Γ′(ω̄)[Γ′(ω̄) − µG′(ω̄)]

{
[Γ′(ω̄)]2

1 − Γ(ω̄)
+
µ[Γ′(ω̄)G′′(ω̄) − Γ′′(ω̄)G′(ω̄)]

Γ′(ω̄) − µG′(ω̄)

}
− 1

−
Γ(ω̄) − µG(ω̄)

1 − Γ(ω̄)
Γ′(ω̄)

Γ′(ω̄) − µG′(ω̄)
=

[Γ(ω̄) − µG(ω̄)]µ[Γ′(ω̄)G′′(ω̄) − Γ′′(ω̄)G′(ω̄)]
Γ′(ω̄)[Γ′(ω̄) − µG′(ω̄)]2 > 0

Proof of Proposition 1: From the optimal default decision (2) we have that Z = l0/(l0 − 1)Rkω̄.
On the other hand, from equation (4) we have Rb = l0/(l0 − 1)Rk[Γ(ω̄) − µG(ω̄)]. Then, the default
premium is given by

Φd(ω̄) =
ω̄

Γ(ω̄) − µG(ω̄)
(A.11)

Taking the derivative:
dΦd(ω̄)

dω̄
=

1
Γ(ω̄) − µG(ω̄)

−
ω̄[Γ′(ω̄) − µG′(ω̄)]
[Γ(ω̄) − µG(ω̄)]2

which is larger than zero iff
Γ(ω̄) − µG(ω̄) > ω̄[Γ′(ω̄) − µG′(ω̄)]

Using the definition of Γ(ω̄) = ω̄(1−F(ω̄)) + G(ω̄) and that Γ′(ω̄) = 1−F(ω̄), the previous inequality
is equivalent to

(1 − µ)G(ω̄) > −ω̄µG′(ω̄)

But the previous inequality follows from 1 − µ > 0, G(ω̄) ≥ 0 and G′(ω̄) = ω̄dF(ω̄) > 0, for any
ω̄ > 0.

Proof of Proposition 2: When there is no need to compensate investors for liquidity risk, the
expected return from lending to entrepreneurs is equal to the outside option of holding stor-
age. In other words, the liquidity premium is zero, i.e. Φ`(θ) = 1, and Rb = (1 + r)2 or
k0Rk [Γ (ω̄) − µG (ω̄)

]
= (k0−n0)(1 + r)2. This is equivalent to the benchmark costly state verification

model where investors are only compensated for credit risk. Note that entrepreneurs’ profits do
not depend directly on secondary market liquidity. We proceed by showing that Φ`(θ) = 1 under
the three alternative condition stated in Proposition 2.

Condition 1: δ = 0. This implies that secondary market liquidity θ → ∞, hence p(θ) = 0. Setting
δ = 0 and p(θ) = 0 yields Φ`(θ) = 1.

Condition 2: β = (1 + r)−1. Simple substitution yields Φ`(θ) = 1.

Condition 3: ψ = 1 and f (θ) = 1. Simple substitution yields Φ`(θ) = 1.
For any given distribution for the idiosyncratic productivity shock ω, the upper threshold

¯̄ω that entrepreneurs can promise to investors under perfect secondary markets is given by
Γ′ ( ¯̄ω) − µG′ ( ¯̄ω) = 0, this also gives an upper bound on leverage ¯̄l0 (see the proof of Theorem
1). This implies a maximum amount of borrowing, ¯̄b0, which is given by the break-even condition
(¯̄b0 + n0)Rk [Γ ( ¯̄ω) − µG ( ¯̄ω)

]
= ¯̄b0(1 + r)2. In turn this implies a lower bound for investors’ endow-
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ment, ē0, such that θ > θ for e0 > ē0 given that θ = (1 − δ)(1 + r)(e0/n0 + 1 − ¯̄l0)/[δq1(¯̄l0 − 1)] is
increasing in e0 and the highest value for q1 is ¯̄l0/(¯̄l0 − 1)Rk [Γ ( ¯̄ω) − µG ( ¯̄ω)

]
.

Condition 4: ν → ∞. In this case f (θ), p(θ) → 1. In other words all buy and sell orders are
executed. Note that in this case the return in the secondary market ∆̃ = Rb/q1 will be endogenously
determined by supply and demand rather than surplus splitting. Denote by y ∈ [0, 1] the fraction
of bonds sold by impatient investors, and x ∈ [0, 1] the fraction of wealth that patient investors
exchange for bonds in the secondary market. Then, market clearing in the secondary market
requires that

q1δyb0 = (1 − δ)(1 + r)xs0

Then, consumption for impatient investors at t = 1 and t = 2, respectively, is given by cI
1 =

(1 + r)s0 + q1yb0 and cI
2 = (1 − y)b0Rb. Similarly, patient investors allocate to storage at t = 1

sP
1 = (1 − x)(1 + r)s0, and consume in period 2 cP

2 = (1 + r)s1 +
(
b0 + (1 + r)xs0/q1

)
Rb. Moreover, we

can write investor’s break-even condition equating the expected utility from storage and bonds at
t = 0, with

Us = δ(1 + r) + (1 − δ)(1 + r)
[
x∆̃ + (1 − x)(1 + r)

]
and Ub =

{
δ
[
y∆̃−1 + (1 − y)β

]
+ (1 − δ)

}
Rb .

There are four possible cases to consider depending whether patient and impatient investors
are indifferent or strictly prefer to trade in the secondary market.

First, consider that patient investors are indifferent, i.e., x ∈ [0, 1], and impatient investors
strictly prefer to trade, so y = 1. The former imply that ∆̃ = 1 + r. Substituting in the break-even
condition we obtain that Rb = (1 + r)2 and q1 = 1 + r. That is, there is no liquidity premium and the
model would collapse to the benchmark CSV. In order for this to be an equilibrium the secondary
market needs to clear, which is the case if

(1 + r)δn0(l0 − 1) = (1 − δ)(1 + r)x(e0 − n0(l0 − 1)) ⇔ n0(l0 − 1) < e0(1 − δ) ,

which follows from the patient investors’ deep-pocket assumption.
Second, consider that both type of investors strictly prefer to trade in the secondary market.

In this case x = y = 1. Substituting these in the break-even condition we get that ∆̃ = Rb/(1 + r),
hence q1 = 1 + r. In this case market clearing will require that

(1 + r)δn0(l0 − 1) = (1 − δ)(1 + r)(e0 − n0(l0 − 1)) ⇔ l0 =
e0

n0
(1 − δ) + 1 ,

i.e., firm borrowing is rationed by the “endowment of the patient investors”, e0(1 − δ). To support
this equilibrium, investors’ wealth should be “scarce” and the equilibrium in the primary market
should support, ∆̃ ≥ 1 + r, in the secondary market, or equivalently Rb

≥ (1 + r)2. Therefore, the
firm can choose the lowest level of risk such that at the given leverage, Rb = (1 + r)2. But then
there is no liquidity premium, i.e., Φ` = 1, as in the previous case with the exception that firm’s
borrowing is rationed. However, this cannot be an equilibrium as it contradicts the investor’s
deep-pocket assumption.

Third, consider that impatient investors are indifferent, i.e., y ∈ [0, 1], and patient investors
strictly prefer to trade, so x = 1. The former imply that ∆̃ = β−1. Substituting in the break-even
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condition we get that Rb = β−1(1 + r), hence q1 = 1 + r. Then, market clearing requires that

(1 + r)δyn0(l0 − 1) = (1 − δ)(1 + r)(e0 − n0(l0 − 1)) ⇔ n0(l0 − 1) > e0(1 − δ) .

In this case, the firm is able to borrow more compared to the second case above, but needs to
compensate (impatient) investors for the fact that they get a bigger discount in the secondary
market, equal to β−1. In this case, there is a liquidity premium Φ` = β−1/(1+ r) > 1, but importantly
it does not depend on secondary market liquidity θ. Note that this case encompasses a situation
where the firm borrows all inventors’ endowment, b0 = e0, and there is no trade in the secondary
market. This is consistent with investors choices in the primary market as the return on bonds
equals the return on storage, and the latter dominates the autarky return δ(1 + r) + (1 − δ)(1 +
r)2. However, this cannot be an equilibrium as it contradicts the patient investor’s deep-pocket
assumption.

Comparing cases two and three above, we observe that the firm in case two is borrowing up
to the endowment of the patient investors, but faces lower financing cost. This is because the
return in secondary markets is the lowest, 1 + r, and this is priced in the primary market, through
Rb. Altenatively, in case three the firm borrows more than can be financed by the endowment of
patient investors, but faces higher financing cost: there is a liquidity premium. In this case, the
return on the secondary market and thus on debt is the highest. Whether the firm will chose one
or the other will be determined in equilibrium by the trade-off between leverage and financing
cost that depends on firm’s technology and investor’s preferences and endowments.

Finally, consider the case that both type of investors are indifferent. Then, it must be that
1 + r = ∆̃ = β−1, which is a contradiction if β < 1/(1 + r). If, on the other hand, β = 1/(1 + r) then the
investor’s break-even condition imply that Rb = (1 + r)2, or alternatively that Φ` = 1.

Proof of Lemma 1: We want to show that the derivative of the liquidity premium wrt liquidity is
negative. Denote by C and D the numerator and denominator in Φ`(θ) given by 21. Then,

C = δ + (1 − δ)
[
(1 − p)(1 + r) + p∆

]
> 0 (A.12)

D = δ
[

f∆−1 + β(1 − f )
]

+ (1 − δ) > 0

where the inequalities follow from the fact that probabilities and returns are non-negative. In
addition, denote Cθ and Dθ the derivatives of C and D, respectively, wrt θ. Then

Cθ = ∂C
∂θ = (1 − δ) [∆ − (1 + r)] dp(θ)

dθ ≤ 0

Dθ = ∂D
∂θ = δ

[
∆−1
− β

] d f (θ)
dθ ≥ 0

where the inequalities follow from β < 1/(1 + r), equations (6) and (7), and that the matching
function m(A,B) is increasing in both arguments. From equation (21) we have that

dΦ`

dθ
=

1
1 + r

[Cθ
D
−

CDθ

D2

]
≤ 0 (A.13)

where the inequality follows from the previously established inequalities: D,C > 0, Dθ ≥ 0 and
Cθ ≤ 0.

In the case where θ < θ and ψ > 0, then Dθ > 0, so dΦ`/dθ < 0. Alternatively, if θ ≥ θ,
i.e., f (θ) = 1, our assumptions require that ψ < 1. In addition, dp(θ)/dθ < 0. With ψ < 1 and
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dp(θ)/dθ < 0 then Cθ < 0, so dΦ`/dθ < 0. Moreover, when θ ∈
(
θ, θ

)
we have that dp(θ)/dθ < 0

and d f (θ)/dθ > 0, so dΦ`/dθ < 0. Therefore, we conclude that dΦ`/dθ < 0 when OTC trade is
relevant, apart from the case were θ < θ and ψ = 0.

Regarding the second part of the Lemma, the elasticity of the liquidity premium, Φ`, with
respect to the secondary market liquidity, θ, is written, using equation (A.13), as:

ζΦ`,θ =
θ

Φ`

dΦ`

dθ
=

θ
1 + r

CθD − CDθ

CD
, (A.14)

Then
∣∣∣ζΦ`,θ

∣∣∣ < 1 requires:

−
θ

1 + r
CθD − CDθ

D2 <
1

1 + r
C
D

⇔ CD + θCθD − θCDθ > 0

First, lets consider the case where θ ∈
(
θ, θ

)
. In this case, f (θ) = νθ1−α and p(θ) = νθ−1. Thus,

θ
d f (θ)

dθ = (1 − α) f (θ) and θdp(θ)
dθ = −αp(θ). Then,

Cθθ = −αC + α[δ + (1 − δ)(1 + r)] ≤ 0 (A.15)

Dθθ = (1 − α)D − (1 − α)[βδ + (1 − δ)] ≥ 0 (A.16)

Then,

CD + θCθD − θCDθ = CD + D {−αC + α[δ + (1 − δ)(1 + r)]} − C
{
(1 − α)D − (1 − α)[βδ + (1 − δ)]

}
= αD[δ + (1 − δ)(1 + r)] + C(1 − α)[βδ + (1 − δ)] > 0 .

Second, consider the case where θ < θ. In this case, p(θ) = 1 and f (θ) = θ, so d f (θ)/dθ = 1 and
dp(θ)/dθ = 0. Want to show that D − θDθ > 0. From above Dθ = δ[∆−1

− β]. Then,

D − θDθ = δβ + (1 − δ) > 0 .

Finally, consider the case where θ > θ and ψ < 1. In this case, θd f (θ)/dθ = θDθ = 0 and
p(θ) = θ−1. Thus, we want to show that C + θCθ > 0. From above, θCθ = −θ−1(1 − δ)[∆ − (1 + r)].
Then,

C + θCθ = δ + (1 − δ)(1 + r) > 0 .

Proof of Proposition 3: From the investors’ break-even condition (20), we see that an increase
in the liquidity premium, Φ` induces investors to require a higher expected return Rb to invest in
corporate bonds. Hence, the liquidity premium Φ` and the hold-to-maturity bond return Rb are
proportional to one another. In fact,

(1 + r)2Φ` = Rb
⇒

dRb

dΦ`
=

Rb

Φ`
> 0

For this proof we consider the liquidity premium a function of both secondary market liquidity,
θ, and model parameters δ and β. That is, we can write the liquidity premium as Φ`(θ, δ, β).

Case 1: Effect of δ. Want to show that
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dΦ`

dδ
=
∂Φ`

∂δ
+
∂Φ`

∂θ
∂θ
∂δ

> 0

From the definition of secondary market liquidity, given in equation (19), and considering the
dependence of secondary market pricing on liquidity premia, we have that

∂θ
∂δ

= −
θ

δ(1 − δ)
−
θ
q1

dq1

dRb

dRb

dΦ`

dΦ`

dδ
= −

θ
δ(1 − δ)

−
θ

Φ`

dΦ`

dδ

Using this expression we get

dΦ`

dδ
=

∂Φ`

∂δ −
1

δ(1−δ) zΦ`,θ

1 + ζΦ`,θ

where ζΦ`,θ is the elasticity of the liquidity premium with respect to secondary market liquidity,
which is negative and strictly greater than −1 (Lemma 1). Therefore, 1 + ζΦ`,θ > 0.

It is left to show that ∂Φ`/∂δ > 0. For that we use the notation introduced in equation (A.12).
In addition, denote Cδ and Dδ the derivatives of C and D, respectively, wrt δ. Then

Cδ = ∂C
∂δ = 1 −

[
(1 − p)(1 + r) + p∆

]
Dδ = ∂D

∂δ =
[

f∆−1 + (1 − f )β
]
− 1

Then, from equation (21) we have that

∂Φ`

∂δ
=

1
1 + r

[Cδ
D
−

CDδ

D2

]
which is strictly greater than zero if and only if

CδD > CDδ

Cδ [δDδ + 1] > [δCδ + 1 − Cδ] Dδ

Cδ > [1 − Cδ] Dδ

or

1 −
[
(1 − p)(1 + r) + p∆

]
>

[
(1 − p)(1 + r) + p∆

] {[
f∆−1 + (1 − f )β

]
− 1

}
⇔ 1 >

[
(1 − p)(1 + r) + p∆

] [
f∆−1 + (1 − f )β

]
It is easy to check that after distributing terms in the previous expression the four remaining terms,
are a weighted average of terms strictly smaller than 1, with the weights given by the product of
probabilities f and p adding up to 1. In fact, β < 1/(1 + r) imply that

β(1 + r) < 1 , ∆−1(1 + r) < 1 , and ∆β < 1 .

Case 2: Effect of β. Want to show that

dΦ`

dβ
=
∂Φ`

∂β
+
∂Φ`

∂θ
∂θ
∂β

< 0 .
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For that we use the notation introduced in equation (A.12). In addition, denote Cβ and Dβ the
derivatives of C and D, respectively, wrt β. Then

Cβ = ∂C
∂β = −(1 − δ)p∆2(1 − ψ) < 0 ,

and Dβ = ∂D
∂β = δ[ f (1 − ψ) + 1 − f ] = δ(1 − ψ f ) > 0 .

where the inequalities follow from our assumption about δ, ψ, and f (θ). Then,

∂Φ`

∂β
=

1
1 + r

[
Cβ
D
−

CDβ

D2

]
< 0 ,

as Cβ < 0 and Dβ,C,D > 0.
From the definition of secondary market liquidity, given in equation (19), and considering the

dependence of the secondary market price on liquidity premia, we have that

∂θ
∂β

= −
θ
q1

[
∂q1

∂β
+
∂q1

∂Rb

dRb

dΦ`

dΦ`

dβ

]
= −θ

[
(1 − ψ)∆ +

1
Φ`

dΦ`

dβ

]
Thus,

dΦ`

dβ
=

∂Φ`

∂β − (1 − ψ)∆θ∂Φ
`

∂θ

1 + ζΦ`,θ

where ζΦ`,θ is the elasticity of the liquidity premium with respect to secondary market liquidity.
From Lemma 1 the denominator, 1 + ζΦ`,θ, is strictly positive. But the sign of the numerator is
ambiguous. The reason is that a higher β on one hand reduces the preference for liquidity by
impatient households, i.e., ∂Φ`/∂β < 0. But on the other hand it increases the secondary market
price, q1, which pushes market liquidity θ down and liquidity premia up. This second force,
represented by the second term in the numerator, depends crucially on the bargaining power
of impatient investors: the lower their bargaining power the more important the effect of their
valuation, i.e., β, will be on the price.

The numerator is negative if and only if

(1 − ψ)∆θ[CθD − CDθ] − CβD + CDβ > 0

Using the expressions derived above for C, D, Cθ, Dθ, Cβ, and Dβ, we have

(1 − ψ)∆θ[CθD − CDθ] − CβD + CDβ

= − (1 − ψ)∆αp(1 − δ)[∆ − (1 + r)][δ( f∆−1 + (1 − f )β) + (1 − δ)]

− (1 − ψ)∆(1 − α) fδ[∆−1
− β][δ + (1 − δ)[(1 − p)(1 + r) + p∆]]

+ (1 − ψ)p(1 − δ)∆2[δ[ f∆−1 + (1 − f )β] + (1 − δ)]

+ δ[ f (1 − ψ) + 1 − f ][δ + (1 − δ)[(1 − p)(1 + r) + p∆]]
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(1 − ψ)∆θ[CθD − CDθ] − CβD + CDβ

= (1 − ψ)[δ( f∆−1 + (1 − f )β) + (1 − δ)]
{
(1 − α)p(1 − δ)∆2 + p(1 − δ)(1 + r)

}
+ (1 − ψ)[δ + (1 − δ)[(1 − p)(1 + r) + p∆]]

{
α fδ + (1 − α) fδ∆β

}
+ (1 − f )δ[δ + (1 − δ)[(1 − p)(1 + r) + p∆]] > 0

Case 3: Effect of e0. Want to show that
dΦ`

de0
< 0 . (A.17)

Note that investors’ endowment e0 affects liquidity premium Φ` only through its effect on secondary
market liquidity θ. In particular, it has an effect only through s0 = e0 − b0 given that we have fixed
leverage in this exercise. Thus,

dΦ`

de0
=
∂Φ`

∂θ
∂θ
∂s0

ds0

de0
=
∂Φ`

∂θ
θ
s0
< 0

where the inequality follows from Lemma 1.

Proof of Proposition 4:
Case 1: Comparative Statics on δ. Recall that from equation (18) we can rearrange terms to get
leverage as a function of risk, l0(ω̄), equation (A.4). In addition, from equation (19) we can express
θ as a function of l0(ω̄), ω̄, and δ, i.e., θ(l0(ω̄), ω̄, δ). Using these expressions, equilibrium conditions
boil down to the investors’ break-even condition, which can be expressed as

(1 + r)2Φ`(θ(l0(ω̄), ω̄, δ), δ) = Rb(l0(ω̄), ω̄)

By the Implicit Function Theorem, if the derivative of the previous expression wrt ω̄ is different
than 0, then we can define ω̄(δ) and calculate its derivative from the previous expression. We want
to show that dω̄

dδ < 0.
Fully differentiating wrt to ω̄ we obtain

(1 + r)2
{
∂Φ`

∂θ

[
∂θ
∂l0

dl0
dω̄

dω̄
dδ

+
∂θ
∂ω̄

dω̄
dδ

+
∂θ
∂δ

]
+
∂Φ`

∂δ

}
=
∂Rb

∂l0
dl0
dω̄

dω̄
dδ

+
∂Rb

∂ω̄
dω̄
dδ

Thus,
dω̄
dδ

=
Hδ

J

with

Hδ = −(1 + r)2
{
∂Φ`

∂θ
∂θ
∂δ

+
∂Φ`

∂δ

}

J = (1 + r)2
{
∂Φ`

∂θ

[
∂θ
∂l0

dl0
dω̄

+
∂θ
∂ω̄

]}
−
∂Rb

∂l0
dl0
dω̄
−
∂Rb

∂ω̄
(A.18)
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From Proposition 3 ∂Φ`

∂δ > 0. In addition,

∂θ
∂δ

= −
θ

δ(1 − δ)
< 0

and ∂Φ`/∂θ < 0 from Lemma 1. Thus, Hδ < 0.
Next we want to show that J > 0. For that first recall that from equation (A.8) we have

that (∂θ/∂l0)(dl0/dω̄) + (∂θ/∂ω̄) < 0. Second, note that from equation (A.10) we have that
(∂Rb/∂l0)(dl0/dω̄) + ∂Rb/∂ω̄) < 0.

Therefore, we conclude that J > 0 and dω̄/dδ < 0. It follows from dl0/dω̄ > 0, equation (A.7),
that dl0/dδ < 0.

Proof of Corollary 1: The effect of any parameter % on the default premium is described by

dΦd

d%
=

dΦd

dω̄
∂ω̄
∂%
.

Since dΦd

dω̄ > 0 from Proposition 1, the result on the default premium follows from Proposition 4.

Proof of Proposition 5: We want to show that if the competitive equilibrium is constrained
efficient, then (α,ψ, r) ∈ ∅, a set of measure zero.

Suppose (lce
0 , ω̄

ce, θce, qce
1 ), the competitive equilibrium, is constrained efficient. Since (lce

0 , ω̄
ce, θce, qce

1 )
is a competitive equilibrium the investor break-even condition (15) holds, i.e., Us = Ub, and from
equation (18) it must be that

1 − Γ(ω̄ce)
lce
0 Γ′(ω̄ce)

= −
∂Ub/∂l0
∂Ub/∂ω̄

.

On the other hand, since (lce
0 , ω̄

ce, θce, qce
1 ) is constrained efficient, from equation (26) it must be that

[1 − Γ(ω̄ce)]
lce
0 Γ′(ω̄ce)

= −
n0(Ub −Us) + bce

0
∂Ub
∂l0

+ ∂U
∂θ

∂θ
∂l0

bce
0
∂Ub
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

.

Using that Us = Ub, then
bce

0
∂Ub
∂l0

+ ∂U
∂θ

∂θ
∂l0

bce
0
∂Ub
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

=

∂Ub
∂l0
∂Ub
∂ω̄

,

which is the case iff
∂U
∂θ

[
∂Ub

∂ω̄
∂θ
∂l0
−
∂Ub

∂l0
∂θ
∂ω̄

]
= 0 (A.19)

Note that,
∂Ub

∂ω̄
∂θ
∂l0
−
∂Ub

∂l0
∂θ
∂ω̄

< 0, (A.20)

since
∂Ub

∂l0
= −

Ub

l0(l0 − 1)
< 0 and

∂Ub

∂ω̄
=

Ub[Γ′(ω̄) − µG′(ω̄)]
Γ(ω̄) − µG(ω̄)

> 0 (A.21)

where the last inequality follows from Theorem 1; and ∂θ/∂l0, ∂θ/∂ω̄ < 0 from equation (A.9).
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Then, A.19 holds iff ∂U/∂θ = 0, which is the case iff

sce
0
∂Us

∂θ
+ bce

0
∂Ub

∂θ
= 0

sce
0 (1 − δ)(1 + r)[∆ − (1 + r)]p′(θce) + bce

0 δ[∆−1
− β] f ′(θce)Rb = 0

p(θce)
α
θce sce

0 (1 − δ)(1 + r)[∆ − (1 + r)] = f (θce)
1 − α
θce bce

0 δ[∆−1
− β]Rb

θce =
αsce

0 (1 − δ)(1 + r)[∆ − (1 + r)]

(1 − α)bce
0 δ[∆−1 − β]Rb

But from equation (19) θce = (1 − δ)(1 + r)∆sce
0 /(δbce

0 Rb), then

α[∆ − (1 + r)]
(1 − α)[∆−1 − β]

= ∆ ⇔ ∆[α + (1 − α)β] = 1 + αr

⇔
ψ

1 + r
+ (1 − ψ)β =

α + (1 − α)β
1 + αr

⇔ ψ =
α(1 − β(1 + r))

1 + αr
1 + r

(1 − β(1 + r))

⇔ ψ(1 + αr) = α(1 + r) (A.22)

The set of (α,ψ, r) satisfying (A.22) is, thus, of measure zero.

Proof of Proposition 6:

Part 1. The sign of the externality determines the socially optimal level of secondary market
liquidity.

Let L be the Lagrangian of the planner’s problem, which is given

L = [1 − Γ(ω̄)]Rkl0 − λ[Uce
− s0Us − b0Ub],

Fully differentiating and evaluating at the competitive equilibrium allocation (lce
0 , ω̄

ce, θce) we have

dL(lce
0 , ω̄

ce, θce) = λ
∂U
∂θ

dθ,

where we have substituted the optimality conditions in the competitive equilibrium. Thus, the
planner, who internalizes the effect of liquidity on the investor’s utility, would like to increase
liquidity in secondary markets when the externality is positive, i.e., ∂U/∂θ > 0, and decrease
liquidity if the externality is negative, i.e., ∂U/∂θ < 0.

Part 2. Show that the sign of the externality depends on the relationship between the parameters
(α, r, ψ).

Want to show that

ψ(1 + αr) > α(1 + r) ⇔
∂U
∂θ

> 0.
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In fact,

ψ(1 + αr) > α(1 + r) ⇔ ∆ >
α[∆ − (1 + r)]

(1 − α)[∆−1 − β]

⇔ θ >
αs0(1 − δ)(1 + r)[∆ − (1 + r)]

(1 − α)b0δ[∆−1 − β]Rb

⇔ b0
∂Ub

∂θ
+ s0

∂Us

∂θ
> 0 ⇔

∂U
∂θ

> 0.

Part 3. Characterization of the efficient contract.
Let ω̄pi(l0) be the function implicitly defined by the Pareto improvement constraint in the

planner’s problem (23). Using the Implicit Function Theorem and equation (A.20) we have that

dω̄pi

dl0
= −

∂U
∂l0

+ ∂U
∂θ

∂θ
∂l0

∂U
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

Similarly, using the notation introduced in the proof of Theorem 1, where ω̄ibec(l0) denotes the
function implicitly defined by the investors’ break-even condition in the competitive economy for
ω̄ < ¯̄ω. From equation (A.2) we had that

dω̄ibec

dl0
= −

∂Ub
∂l0
∂Ub
∂ω̄

Note that the competitive equilibrium is a feasible point of the pareto improvement constraint,
so ω̄pi(lce

0 ) = ω̄ibec(lce
0 ). Moreover, note that

dω̄pi(lce
0 )

dl0
−

dω̄ibec(lce
0 )

dl0
=

∂U
∂θ

[
∂θ
∂ω̄

∂Ub
∂l0
−

∂θ
∂l0

∂Ub
∂ω̄

]
∂Ub
∂ω̄

[
b0
∂Ub
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

]
where all the derivatives on the RHS are evaluated at (lce

0 , ω̄
ce, θce), and we used that

∂U(lce
0 , ω̄

ce, θce)

∂l0
= n0(Ub(lce

0 , ω̄
ce, θce) −Us(θce)) + bce

0

∂Ub(lce
0 , ω̄

ce, θce)

∂l0
= bce

0

∂Ub(lce
0 , ω̄

ce, θce)

∂l0

It follows from above and equation (A.20) that

dω̄pi(lce
0 )

dl0
−

dω̄ibec(lce
0 )

dl0
> 0 ⇔

∂U
∂θ

> 0.

Then, if ψ(1 + αr) > α(1 + r), from Part 2, ∂U/∂θ > 0, and, thus,

dω̄pi(lce
0 )

dl0
>

dω̄ibec(lce
0 )

dl0
> 0

where the last inequality follows from equation (A.21). That means there are points that are feasible
for the planner where (l0, ω̄) << (lce

0 , ω̄
ce) that achieve higher profits for the firm, so the planner will
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choose an allocation with lower leverage and risk. (Note that by equation (A.9) this imply that the
planer will set a higher secondary market liquidity: θ > θce.)

Similarly, if ψ(1 + αr) < α(1 + r), from Part 2, ∂U/∂θ < 0, so

0 <
dω̄pi(lce

0 )

dl0
<

dω̄ibec(lce
0 )

dl0

That means there are points that are feasible for the planner where (l0, ω̄) >> (lce
0 , ω̄

ce) and higher
firm’s profits, so the planner will choose an allocation with higher leverage and risk.

Proof of Proposition 7:

Part 1. Deriving the tax instruments.
The firm’s problem with taxes on storage and leverage can be written as

[1 − Γ(ω̄)]Rkl0 − τlλl0 + Tl (A.23)

subject to
Ub = (1 − τs)Us (A.24)

We write the Lagrangian for this problem as

L = [1 − Γ(ω̄)]Rkl0 − τlλl0 + Tl
− λ[(1 − τs)Us −Ub] (A.25)

Then, the optimality conditions are

[1 − Γ(ω̄)]Rk = τlλ − λ
∂Ub

∂l0
(A.26)

Γ′(ω̄)]Rkl0 = λ
∂Ub

∂ω̄
(A.27)

Note that the FOC for (ω̄), equation (A.27), together with equation (A.21) ensures that λ > 0, which
is not necessarily the case with equality constraints. And the optimal contract is described by

1 − Γ(ω̄)
l0Γ′(ω̄)

= −

∂Ub
∂l0
− τl

∂Ub
∂ω̄

. (A.28)

Equating the previous expression and equation (26), and using that Ub − Us = −τsUs, we derive
the tax on leverage:

τl =
n0Us

∂Ub
∂ω̄ τ

s +
[
∂Ub
∂l0

∂θ
∂ω̄ −

∂Ub
∂ω̄

∂θ
∂l0

]
∂U
∂θ

b0
∂Ub
∂ω̄ + ∂θ

∂ω̄
∂U
∂θ

The term in square brackets is positive from equation (A.20). On the other hand, using equations
(A.9) and (A.21) the denominator is positive iff

b0

{
δ
[

f (θ)∆−1 + (1 − f (θ))β
]

+ 1 − δ
}

Rb

− s0(1 − δ)(1 + r) [∆ − (1 + r)] p′(θ)θ − b0δ
[
∆−1
− β

]
f ′(θ)θRb > 0.
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Using that p′(θ)θ = −αp(θ) and f ′(θ)θ = (1 − α) f (θ) the previous expression equals

b0
{
δβ + 1 − δ

}
Rb + αs0(1 − δ)(1 + r) [∆ − (1 + r)] p(θ) + αb0δ

[
∆−1
− β

]
f (θ)Rb > 0,

where the inequality follows from ∆ > 1 + r and ∆−1 > β, since β < 1/(1 + r).
On the other hand, the break-even condition of investors with a tax on storage was given by

equation (A.24). Combining it with constraint (23) we derive the tax on storage:

τs =
e0

b0

(
1 −

Us(θce)
Us(θ)

)

Part 2. Signing the tax on storage.
If ψ(1 + αr) > α(1 + r) then from Proposition 6 the planner wants to increase secondary market

liquidity so θ > θce. Thus, the storage technology is subsidized: τs
≤ 0. In fact, the tax on storage

is negative from equation (27) if ψ < 1 and is zero if ψ = 0.
On the contrary, if ψ(1 + αr) < α(1 + r), then the externality is negative, the planner wants to

reduce secondary market liquidity, and, therefore, τs > 0.

Part 3. Signing the tax on leverage.
We start by describing the feasible allocations for a firm that chooses the optimal contract and

faces the the optimal tax on storage, and the efficient level of secondary market liquidity. That is,
τs is given by equation (27) and θ is the one that the planner would choose optimally. In this case
we have

(1 − τs)Us(θ) =

(
1 −

e0

b0

Us(θ) −Us(θce)
Us(θ)

)
Us(θ) =

b0Ub(lce
0 , ω̄

ce, θce) + s0Us(θce) − s0Us(θ)

b0

where we used that in the competitive equilibrium Us(θce) = Ub(lce
0 , ω̄

ce, θce), and bce
0 + sce

0 = e0.
Lets consider first the case when ψ(1 + αr) > α(1 + r). In this case ∂U/∂θ > 0 and θ > θce, then

b0Ub(lce
0 , ω̄

ce, θce) + s0Us(θce) < b0Ub(lce
0 , ω̄

ce, θ) + s0Us(θ)

So we conclude that
(1 − τs)Us(θ) < Ub(lce

0 , ω̄
ce, θ)

Since ∂Ub/∂ω̄ > 0, for the leverage of the competitive equilibrium lce
0 a feasible level of risk lies

below the risk in the competitive equilibrium. So the investor’s break-even condition with the
optimal tax and the efficient level of liquidity will lie below the investor’s break-even condition in
the competitive problem. Moreover, from equation (A.2) the slope of this constraint at lce

0 , which
has the same expression regardless of the tax, will be flatter.

The firm, then, if it were to face this constraint without a tax on leverage will choose a higher
leverage, at odds with the planner optimal prescriptions. The planner then will distort the firm’s
decision to disincentivize the use of leverage by levying a tax on leverage. One way to see this is
that the planner will introduce a distortion such that the distorted isoprofit lines are flatter in the
(l0, ω̄)-space.

Let Πτ = [1 − Γ(ω̄)]Rkl0 − τlλl0 + Tl, and denote by ω̄Πτ
(l0) the function that for any l0 gives the

associated risk level ω̄ along the taxed firm isoprofit line. Then, the Implicit Function Theorem
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implies that
dω̄Πτ

dl0
=

[1 − Γ(ω̄)]Rk
− τlλ

Γ′(ω̄)]Rkl0

so a flatter slope requires a positive τl.
Using the same reasoning we conclude that if ψ(1 + αr) < α(1 + r), then τl < 0.

Proof of Proposition 8: In the presence of quantitative easing, firms’ borrowing is given by b0 + b̄0,
whereas investors’ lending is given by b0. Then from the budget constraint of entrepreneurs we
have that k0 = n0 + b0 + b̄0, so investors’ lending can be written in terms of entrepreneurs leverage
and QE as b0 = n0(l0 − 1 − b̄0/n0). On the other hand, from the investors’ budget constraint,
b0 + s0 + s̄0 = e0, so we can express the amount invested in the storage technology in terms of
entrepreneurs leverage as s0 = n0(e0/n0 − (l0 − 1)). Note that the size of the QE program does not
affect the amount ultimately invested in storage, as the bonds the central bank purchases are offset
with the reserves it takes from investors. Finally, from the central bank’s budget constraint we
have that s̄0 = b̄0.

Using the previous expressions we can express secondary market liquidity in terms of en-
trepreneurs leverage and QE, conditional on the interest on reserves relative to the return on the
OTC market. Note that the number of sell orders is always equal to A = δb0, as impatient investors
will put all their bond holdings for sale in the OTC market.

If ∆ > 1+ r̄ patient investors pledge all their liquid assets to place buy orders in the OTC market
so the number of buy orders B = (1 − δ)[(1 + r)s0 + (1 + r̄)s̄0]/q1 and market liquidity is given by

θ =
(1 − δ)[(1 + r)s0 + (1 + r̄)s̄0]

δb0q1
=

(1 − δ)∆
[
(1 + r) (e0 − n0(l0 − 1)) + (1 + r̄)b̄0

]
δRb

(
n0(l0 − 1) − b̄0

) (A.29)

Then,

∂θ

∂b̄0
=

(1 − δ)∆(1 + r̄)

δRb
(
n0(l0 − 1) − b̄0

) +
(1 − δ)∆

[
(1 + r) (e0 − n0(l0 − 1)) + (1 + r̄)b̄0

]
δRb

(
n0(l0 − 1) − b̄0

)2 > 0 (A.30)

On the other hand, when 1 + r̄ > ∆ patient investors place buy orders in the OTC market only
using the liquid assets they hold after funding the reserves liquidated by impatient investors, so
the number of buy orders B = (1 − δ)[(1 + r)s0 − δ/(1 − δ)(1 + r̄)s̄0]/q1 and market liquidity is given
by

θ =
(1 − δ)[(1 + r)s0 −

δ
1−δ (1 + r̄)s̄0]

δb0q1
=

(1 − δ)∆
[
(1 + r) (e0 − n0(l0 − 1)) − δ

1−δ (1 + r̄)b̄0

]
δRb

(
n0(l0 − 1) − b̄0

)
Then,

∂θ

∂b̄0
= −

∆(1 + r̄)

Rb
(
n0(l0 − 1) − b̄0

) +
(1 − δ)∆

[
(1 + r) (e0 − n0(l0 − 1)) − δ

1−δ (1 + r̄)b̄0

]
δRb

(
n0(l0 − 1) − b̄0

)2

=
(1 − δ)∆ [(1 + r)e0 − (1 + r̄)n0(l0 − 1) + (r̄ − r)n0(l0 − 1)]

δRb
(
n0(l0 − 1) − b̄0

)2 > 0
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where the inequality follows from Assumption 4. Then, ∂θ/∂b̄0 > 0.

Proof of Proposition 9: We want to show that a planner that has access to QE as an additional
policy tool will only use it when the return on storage r is strictly lower than (ψ − α)/(α − αψ), or
equivalently, when ψ(1 + αr) > α(1 + r). Let (lsp

0 , ω̄
sp, θsp) be the allocations chosen by the social

planner studied in section 4 and denote by λsp the lagrange multiplier on the constraint of this
planner (23).

Let L be the Lagrangian of the central bank, which can be written as

L = [1 − Γ(ω̄)] Rkl0 − λ
[
Uce
−U(l0, ω̄, θ(l0, ω̄, b̄0, r̄), b̄0, r̄)

]
− γ

[
(1 + r̄)2

− R̄b
]
− ν[r − r̄] + ηb̄0

where we are considering the constraint imposed by the definition of secondary market liquidity
(19) writing θ(l0, ω̄, b̄0, r̄) and where we have already substituted in s̄0 = b̄0. An optimal allocation
for this planner needs to satisfy the following FOCs:

(l0) 0 =
∂L
∂l0

= [1 − Γ(ω̄)] Rk + λ

[
∂U
∂l0

+
∂U
∂θ

∂θ
∂l0

]
+ γ

∂R̄b

∂l0

(ω̄) 0 =
∂L
∂ω̄

= −Γ′(ω̄)Rkl0 + λ

[
∂U
∂ω̄

+
∂U
∂θ

∂θ
∂ω̄

]
+ γ

∂R̄b

∂ω̄

(b̄0) 0 =
∂L

∂b̄0
= λ

[
∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0

]
+ η

(r̄) 0 =
∂L
∂r̄

= λ

[
∂U
∂r̄

+
∂U
∂θ

∂θ
∂r̄

]
− 2γ(1 + r̄) + ν

Note that the size of the bond buying program b̄0 does not affect firm’s profits directly, as the
additional funds that the firm receives from the central bank, b̄0, are perfectly offset by the reduction
in the amount of funds received from investors, b0 = n0(l0 − 1) − b̄0, as long as firm leverage is
unchanged.

The next step is to evaluate the FOCs at the constrained efficient allocation (without QE), i.e.,(
lsp
0 , ω̄

sp, θsp, 0, r
)
. If R̄b(lsp

0 , ω̄
sp) ≤ (1+r)2 the central bank cannot implement QE without violating its

funding constraint (30). So we consider that we are in the interesting case where R̄b(lsp
0 , ω̄

sp) > (1+r)2

and the central bank has some scope to offer a higher return on reserves relative to the storage
technology. In this case the multiplier of this constraint at

(
lsp
0 , ω̄

sp, θsp, 0, r
)

equals zero, i.e., γ = 0.
Moreover, note that at b̄0 = 0, investors’ expected utilityU has the same functional form as in the
case of the planner studied in section 4. Similarly, at b̄0 = 0 secondary market liquidity θ, equation
(A.29), is the same function of choice variables as in the case without QE, equation (19). So we
conclude that the FOCs wrt leverage l0 and risk ω̄ are satisfied at

(
lsp
0 , ω̄

sp, θsp, 0, r
)
. (In fact, we can

use either FOC to obtain that λ = λsp, from where the other FOC follows.)
Next, note that

∂U
∂r̄

= s̄0
∂Us̄

∂r̄
= b̄0

∂Us̄

∂r̄
⇒

∂U
(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂r̄
= 0

63



And given that (1 + r̄) = (1 + r) < ∆ from equation (A.29) we have that

∂θ
∂r̄

=
(1 − δ)∆b̄0

δRb
(
n0(l0 − 1) − b̄0

) ⇒

∂θ
(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂r̄
= 0

So the FOC wrt on interest on reserves r̄ is trivially satisfied, with ν = 0.
Finally, we need to evaluate the FOC wrt b̄0 at

(
lsp
0 , ω̄

sp, θsp, 0, r
)
. From this condition it follows

that
∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0
< 0 ⇒ η > 0 and b̄0 = 0

To sign ∂U/∂b̄0 + (∂U/∂θ) (∂θ/∂b̄0) we proceed to compute these derivatives and evaluate at(
lsp
0 , ω̄

sp, θsp, 0, r
)
. One, note that

U(l0, ω̄, θ, b̄0, r̄) = [e0 − n0(l0 − 1)]Us + b̄0Us̄ + [n0(l0 − 1) − b̄0]Ub

Then,

∂U
(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂b̄0
= Us̄ (θsp, r) −Ub

(
lsp
0 , ω̄

sp, θsp
)

= Us (θsp) −Ub

(
lsp
0 , ω̄

sp, θsp
)

where we used that if interest on reserves are equal to the return on the storage technology then
Us̄ (θsp, r) = Us (θsp), from equation (34). On the other hand, from the conditions that describe the
planner’s allocations we have that

ssp
0 Us(θsp) + bsp

0 Ub

(
lsp
0 , ω̄

sp, θsp
)

= sce
0 Us(θce) + bce

0 Ub

(
lce
0 , ω̄

ce, θce
)

= e0Us(θce)

⇒ Ub

(
lsp
0 , ω̄

sp, θsp
)
−Us (θsp) =

e0 [Us (θce) −Us (θsp)]
bsp

0

= −τsUs (θsp) (A.31)

where we used the defintion of the optimal tax on storage (27) in the last equality.
Then, from the characterization of the optimal tax on leverage in section 4.1 we have that if

r > (ψ − α)/[α(1 − ψ)], or equivalently ψ(1 + αr) < α(1 + r), then

τl < 0 ⇔ n0
∂Ub

∂ω̄

[
Us (θsp) −Ub

(
lsp
0 , ω̄

sp, θsp
)]

+

[
∂Ub

∂l0
∂θ
∂ω̄
−
∂Ub

∂ω̄
∂θ
∂l0

]
∂U
∂θ

< 0 (A.32)

where we have substituted (A.31) into the expression for the optimal tax on leverage (28).
Two, from Proposition 8 we had that∂θ/∂b̄0 > 0 and evaluating equation (A.30) at

(
lsp
0 , ω̄

sp, θsp, 0, r
)

we get
∂θ

(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂b̄0
=

θspe0[
e0 − n0

(
lsp
0 − 1

)]
n0

(
lsp
0 − 1

) (A.33)

Three, note that if r > (ψ − α)/[α(1 − ψ)] we have that from equation (A.32) that

n0
∂Ub

∂ω̄
∂U

∂b̄0
+ n0

∂Ub

∂ω̄
∂θ

∂b̄0

∂U
∂θ

<

{
−
∂Ub

∂l0
∂θ
∂ω̄

+
∂Ub

∂ω̄
∂θ
∂l0

+ n0
∂Ub

∂ω̄
∂θ

∂b̄0

}
∂U
∂θ
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But the term in curly brackets evaluated at
(
lsp
0 , ω̄

sp, θsp, 0, r
)

is zero. In fact, using equations (A.9),
(A.21), and (A.33) we have

−
∂Ub

∂l0
∂θ
∂ω̄

+
∂Ub

∂ω̄
∂θ
∂l0

+ n0
∂Ub

∂ω̄
∂θ

∂b̄0
=

Usp
b θ

sp [
Γ′(ω̄sp) − µG′(ω̄sp)

]
Γ(ω̄sp) − µG(ω̄sp)

 −1

lsp
0

(
lsp
0 − 1

) − e0 + n0

lsp
0

[
e0 − n0

(
lsp
0 − 1

)] +
e0[

e0 − n0

(
lsp
0 − 1

)] (
lsp
0 − 1

) = 0

So we conclude that

n0
∂Ub

∂ω̄
∂U

∂b̄0
+ n0

∂Ub

∂ω̄
∂θ

∂b̄0

∂U
∂θ

< 0

And since ∂Ub/∂ω̄ > 0, then ∂U/∂b̄0 + (∂U/∂θ) (∂θ/∂b̄0) < 0. Thus, it must be that if r > (ψ −
α)/[α(1 − ψ)] then η > 0 and the optimal QE designs calls for not buying bonds, i.e., b̄0 = 0.

Alternatively, when r < (ψ−α)/[α(1−ψ)] we can follow the previous line of argument to show
that the tax on leverage is positive so

n0
∂Ub

∂ω̄
∂U

∂b̄0
+ n0

∂Ub

∂ω̄
∂θ

∂b̄0

∂U
∂θ

>

{
−
∂Ub

∂l0
∂θ
∂ω̄

+
∂Ub

∂ω̄
∂θ
∂l0

+ n0
∂Ub

∂ω̄
∂θ

∂b̄0

}
∂U
∂θ

= 0

where the derivatives are evaluated at
(
lsp
0 , ω̄

sp, θsp, 0, r
)
. Thus,

∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0
> 0

since ∂Ub/∂ω̄ > 0. That is, the central bank wants to buy bonds, so η = 0. Finally, fully differenti-
ating the Lagrangean L of the central bank’s problem and evaluating at the constrained efficient
allocation with out QE

(
lsp
0 , ω̄

sp, θsp, 0, r
)
, we have that

dL = λ

[
∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0

]
db̄0 > 0.

So we conclude that when r < (ψ − α)/[α(1 − ψ)] a central bank will set positive bond buying
program, improving upon the constrained efficient allocation. When b̄0 it follows from the FOC
wrt r̄ that the central bank will pay a higher interest on reserves relative to the return on the storage
technology. In fact, γ will be strictly positive and the central bank’s funding constraint will be
binding.
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Tables and Figures

Table 1: Planning outcomes and Implementation

ψ 1.0 0.8 0.6 0.4 0.2 0.0
% change in l0 -8.62% -5.03% -1.63% 1.72% 5.13% 8.63%
% change in ω̄ -5.27% -3.06% -0.99% 1.04% 3.08% 5.17%
% change in θ 62.01% 27.75% 7.44% -6.70% -17.42% -26.03%
% change in Π 0.23% 0.07% 0.01% 0.01% 0.06% 0.16%
% change inU 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
τl 0.27% 0.15% 0.05% -0.05% -0.13% -0.21%
τs 0.00% -0.05% -0.03% 0.04% 0.14% 0.27%

Note: Percentages correspond to deviations with respect to the competitive equilibrium for variables: leverage (l0), risk (ω̄), market
liquidity (θ), firms’ profits (Π), and investors’ utility (U); and to the level of the optimal taxes on leverage (τl) and storage (τs). Negative
values for taxes corresponds to subsidies. For details see section 4.2.

Table 2: Outcomes with Quantitative Easing

Constrained Efficient Quantitative Easing Quantitative Easing
Allocations with τs = τl = 0 with τs, τl Chosen Optimally

% change in l0 -6.78% 1.68% -3.05%
% change in ω̄ -4.13% 0.72% -2.35%
% change in θ 42.19% 43.37% 167.72%
% change in Π 0.14% 0.42% 0.98%
% change inU 0.00% 0.00% 0.00%
r̄ 1.16% 1.10%
s̄0 0.09 0.18
τl 0.21% 0.17%
τs -0.04% -0.05%

Note: Percentages correspond to deviations with respect to the competitive equilibrium for variables: leverage (l0), risk (ω̄), market
liquidity (θ), firms’ profits (Π), and investors’ utility (U); and to the level of: tax on leverage (τl), tax on storage (τs), and interest rate
on reserves (r̄). Values for reserves (s̄0) are in levels. Negative values for taxes corresponds to subsidies. For details see section 5.4.
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Figure 3: Credit Market Instrument Liabilities
(Nonfinancial corporate business, millions 2013 dollars)

Source: Balance Sheet of Nonfinancial Corporate Business (B.103), Financial Accounts of the
United States; Federal Reserve Economic Data (FRED) St. Louis Fed.
Notes: The data corresponds to the following series in the Financial Accounts: com-
mercial paper (FL103169100); municipal securities and loans (FL103162000); corporate
bonds (FL103163003); loans corresponds to the sum of depository institution loans
n.e.c. (FL103168005) and other loans and advances (FL103169005); and total mortgages
(FL103165005).

Figure 4: Equilibrium in the Frictionless Benchmark

Leverage (l0)

R
is
k
(ω̄

)

 

 

Break−even condition

Inidifference curves of firm

Equilibrium
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Figure 5: Comparative Statics on δ.
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Note: δ take values in {0, 0.1, . . . , 0.5}. See section 3.3.

Figure 6: Bond Premia Decomposition
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Note: For details see section 3.3.
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Figure 7: Constrained Efficient Equilibrium

Leverage (l0)

R
is
k
(ω̄

)

 

 

Break−even condition for δ=0

Break−even condition C.E. for δ>0

Inidifference curves of firm

Break−even condition planner for δ>0

C.E.

Planning solution

Note: For details see section 4.2.

Figure 8: Effect of Quantitative Easing
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69


	Introduction
	Model
	Physical Environment
	The Financial Contract
	The Secondary OTC Market
	Investors
	Impatient Investors
	Patient Investors
	Optimal Portfolio Allocation

	Equilibrium

	Frictions and the (Ir)relevance of OTC Trade
	A Frictionless Benchmark
	OTC Trade in the Secondary Market
	A Numerical Illustration

	The Efficient Structure of Corporate Debt
	Decentralizing the Efficient Equilibrium
	A Numerical Illustration

	Quantitative Easing as part of the Optimal Policy Mix
	Quantitative Easing Policy
	Investors' Problem and Liquidity with QE
	QE and Optimal Policy
	A Numerical Illustration

	Conclusion
	References
	Appendix
	Proofs
	Tables and Figures

