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Abstract

We estimate a multivariate stochastic volatility model for a panel of
stock returns for a number of S&P 500 firms from different industries. As
in the case of a univariate model we use an effi cient importance sampling
(EIS) method to estimate the likelihood function of the given multivariate
system that we analyze. As opposed to univariate methods where each
return is estimated separately for each firm, our results are based on joint
estimation that can account for potential common error term interactions
based on industry characteristics that cannot be detected by univariate
methods. Our results reveal that there are ımportant differences in the
industry effects, something that suggests that differential gains to port-
folio allocations in the different industries that we examine. There are
differences due to idiosyncratic factors and the common industry factors
that suggest that each industry requires a separate treatment in arriving
at portfolio allocations.
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1 Introduction

Asset volatility has been an area of intense research in finance and financial
econometrics in particular in the last three decades. The seminal work of En-
gle (1982) who introduced the ARCH-type models has been one of the main
vehicles to study and model volatility as a conditional moment of interest that
needs estimating. in the same way as the conditional mean that defines the typ-
ical regression function needs to be estimated. In their generalized (GARCH)
form these models assume that conditional variances are functions of past vari-
ances and/or past squared returns. At the same time, stochastic Volatility (SV)
models, introduced by Taylor (1982, 1994) offer an important alternative to
ARCH-type models and are the focus of our paper. Under SV, volatility follows
a stochastic process generally independent of the conditional mean process. In
GARCH-type models the conditional variance of returns is assumed to be a de-
terministic function of past returns, whereas in SV models the volatility process
is random. The introduction of the additional error term makes the SV model
more flexible than the GARCH-type models as well as more directly linked
to continuous time models that are frequently used in asset pricing in finance.
Hence, the main difference between SV models and GARCH-type models is that
the former are conceptually more flexible than the latter in that they allow for
random noise in the volatility process.
The simplest benchmark SV model defines volatility as the log of the con-

ditional variance and assumes that it follows an AR (1) process. However, the
simple benchmark model is not always able to capture certain key features of
the return series data and as such there are a number of proposed extensions
of the benchmark SV model that are designed to do that. For example, an
important effect which has received attention in the literature is the leverage
effect which provides a financial explanation to the observation that volatility
tends to rise following a drop in stock prices and it is generally associated with
asymmetric volatility responses to increases and decreases in returns, see Che-
ung and Ng (1993), Campbell and Kyle (1993), Bouchaud, Matacz and Potters
(2001) and Ozturk and Richard (2015) and the references therein for some of
the more recent literature.
From a computational point of view, the main difference between ARCH-

type and SV models is the fact that the latter require a much more intensive
computational burden. Since volatility enters non-linearly in SV models, their
estimation requires advanced numerical methods, see for example Ghysels, Har-
vey and Renault (1996), Andersen, Chung and Sorensen (1999) and Ozturk and
Richard (2015) and the references therein. In the context of multivariate analy-
sis there has been a number of successful applications of multivariate GARCH
models, see Bauwens et al. (2006) for a discussion of such models. The first
multivariate stochastic volatility latent factor model in the literature is proposed
by Harvey et al. (1994) and then is it extended by Shephard (1996), Pitt and
Shephard (1999), Jacquier et al. (1999) and Doz and Renault (2006). In ad-
dition to capturing parsimony, multivaritae stochasctic volatility have a direct
link with arbitrage pricing theory. Based on the method of inclusion to the
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mean equation to the mean equationö these models can be classified as additive
and multiplicative. The first multivariate factor model proposed by Harvey et al
(1994) was additive. In these models returns are decomposed into two additive
components. The first whish has a smaller dımension captures the factor which
is common to the all assets and the other factor is the idiosyncratic factor which
is specific to the asset. These models are then extended by Shephard (1996),
Pitt and Shephard (1999) and Aguilar and West (2000). These models have
two main drawbacks. The first one is that since homoscedaticity is assumed for
the disturbance of return equation when the number of assets in the portfolio
is greater than the number of factors some of the portfolios have to have no
heteroscedasticity which conflicts with the stylized fact. Furthermore the as-
sumption of the diagonalty in the covariance function of the disturbance term
is too strong. Yu and Meyer (2006) included both time varying volatıility and
correlations to the multivariate stochastic factor volaility models. Furthermore
Philipov and Glickman (2006) also developed a high dimansional factor MSV
model where factor covariance matrices are driven by Wishart processes.
On the other hand, in terms of multiplicative models the first model is pro-

posed by Quintana and West (1987) which is also known stochastic discount
factor model. This model decomposes return into two multiplicative compo-
nents, a scalar common factor and a vector of idiosyncratic noise. When com-
pared with the additive models since it has less number of coeffi cients to be
estimated it is computationally more convenient. However since correlation of
log volatilities are always assumed to be equal to 1, it is invariant with respect to
time. Ray and Tsay (2000) extended this one-factor model to a k-factor model
Overall, the theoretical literature on multivariate stochastic volatility (MSV)
models has developed significantly over the last few years. see Asai, McAleer
and Yu (2006) for an early survey of the multivariate stochastic volatility liter-
ature. More recent multivariate models of dynamic stochastic volatility using
Bayesian methods include Nakajima and West (2013) and Nakajima (2016)
In this paper we estimate a multivariate SV model and we compute Max-

imum Likelihood (ML) estimates using Monte Carlo (MC) approximations of
the likelihood function produced by Effi cient Importance Sampling (EIS). EIS
is a backward sequential IS procedure introduced by Richard and Zhang (2007)
that can be used for effi cient MC evaluation of high-dimensional sequential in-
tegrals and is particularly well suited for accurate MC likelihood evaluation of
SV models, as shown by Liesenfeld and Richard (2003, 2006) It relies upon
a sequence of auxiliary low-dimensional linear regression problems in order to
produce global approximation to the likelihood integrals over their full support
(as opposed to local approximations obtained e.g. by Taylor Series expansions).
Moreover, EIS being generic, once it is implemented for a baseline SV model it
can easily be modified to accommodate extensions of that model. Ozturk and
Richard (2015) within a univariate framework applied the EIS methodology to
estimate a leverage model in six separate sectors, consumer staples, health, in-
dustrials, technology, energy and finance. However, estimating an essentially
multisectoral system by treating each sector as univariate and separate from
each other may conceal and ignore important information about possible inter-
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dependence among the different sectors. Ignoring such information when valid
may in fact introduce serious misspecification and produce invalid estimates.
In the present paper we estimate a multivariate stochastic volatility model

for a panel of stock returns for a number of S&P 500 firms from different indus-
tries. Our model is an extension of the dynamic factor model for multivariate
count data introduced by Jung et al. (2011). As in the case of a univariate
model we use an effi cient importance sampling (EIS) method to estimate the
likelihood function of the given multivariate system that we analyze. As op-
posed to univariate methods where each return is estimated separately for each
firm, our results are based on joint estimation that can account for potential
common error term interactions based on industry characteristics that cannot
be detected by univariate methods. Our results reveal that there are important
differences in the industry effects, something that suggests that differential gains
to portfolio allocations in the different industries that we examine. There are
differences due to idiosyncratic factors and the common industry factors that
suggest that each industry requires a separate treatment in arriving at portfolio
allocations. In particular, when we compare these results with results of the
paper by Ozturk and Richard (2015) who employed univariate methods, we can
see that our results generally support their results that volatilities of the stocks
in the same industry behave similarly but we are also able to show that when an
industry factor is taken into consideration we can discern whether this similarity
in behavior is specific to the given industry or not.
The paper is organized as follows. In the next section we present the method-

ology that we adopt in our approach including a presentation of the EIS method.
The following section presents the data and the results.

2 Methodology

The model we propose in this paper is an extension of the dynamic factor model
for multivariate count data introduced by Jung et al. (2011). The model consists
a J-dimensional vector of returns rt = (r1t, ......, rtj) for time t = 1, . . . ., T . The
dynamic part of the model is developed based on the latent factors. We assume
that returns follow the Gaussian normal distributions

p(rtj |θtj) =
1√

2π exp(λtj)
exp−1

2

(
r2tj

exp(λtj)

)
, t = 1, ..., T j = 1, ...., J

(1)
(define λ′s).whose standard deviations are a function of the latent random

variables. The latent factor θt can be expressed as a linear function of P -
dimensional vector of latent random factors ft as:

θt = µ+ Γft (2)

where Γ is a J × P matrix of factor loadings. We assume that the factors
are distributed independently of each other.
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Since we estimate a multivariate model for the stocks which belong to the
same industry we assume there exists a single common industry-specific factor
vector and J stock specific factors vector. In total P which we partition as
P = J+1. Therefore we also partition the factor loading matrix as Γ = (Γτ ,Γω)
where Γτ = (γτsj ) a J ×1 matrix , and Γω = diag(γ

ωj
j ) a J ×J diagonal matrix.

Therefore for stock j we can parametrize the variance function θ as

θtj = µj + γ
τj
j τ tj + γ

ωj
j ωtj (3)

In this setting we assume that the factors follow independent Gaussian AR(1)
processes to account for possible serial and cross-correlations. The Gaussian
AR(1) processes can be written as:

τ t|τ t−1 ∼ N
(
κτ + δττ t−1, [ν

τ ]
2
)

(4)

ωtj |ωt−1j ∼ N
(
κωj + δωjωt−1j , [ν

ωj ]
2
)

(5)

We need to assume that |δτ | < 1 and |δωj | < 1 to assure stationarity. Fur-
thermore to provide the identification of the coeffi cients we impose the restric-
tions κτs = κωj = 0 for s = 1, ...., S and j = 1, ...., J in order the identify the
intercept µj’s in the variance function. Furthermore, for one arbitrary stock we
restrict γωjj = 1.

2.1 EIS Based Inference

The described model in equations 1 through 5 requires the evaluation of likeli-
hood function by integrating the joint density of returns and factors with respect
to the TxP , (24924 in our case) latent factors. The likelihood integral needs to
be estimated is in the form

L(ψ) =

∫
....

∫
ϕt(ft, ft−1;ψ)dfT ...df1 (6)

where ψ represents the parameters in the model and ϕt is the product of the
time t densities for rt given ft and ft given ft−1which are given in Equations 1-5.
We index the likelihood function based only on the factors since the returns are
kept fixed at their observed values. As an initial condition we assume that f0
is fixed at its unconditional expected value E(ft) = 0. Due to the nonlinearity
of the latent factors likelihood function can not be evaluated based on standard
integration procedures.

We use the Effi cient importance sampling (EIS) Monte Carlo (MC) proce-
dure following Richard and Zhang (2007) for the integration of the likelihood
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function defined in equation 6. The procedure depends upon a sequence of
auxiliary importance sampling densities for ft given ft−1 in the following form:

mt(ft|ft−1; at) =
kt(ft, ft−1; at)

χt(ft−1; at)
, where (7)

χt(ft−1; at) =

∫
kt(ft, ft−1; at)dft

for t = 1, ...., T. {kt(ft, ft−1; at), at ∈ At}Tt=1 is a preselected class of auxiliary
parametric density kernels where χt(ft−1; at) represents the known analytical
integrating factors in ft given ft−1 for the kernel.

Then we can rewrite the likelihood function in (6) in the following form:

L(ψ) = χ1(f0; a1)

∫
....

∫ T∏
t=1

[
ϕt(ft, ft−1;ψ)χt+1(ft; at+1)

kt(ft, ft−1; at)

]
×

T

Π
t=1

mt(ft|ft−1; at)dfT ...df1

(8)
with χT+1(·) ≡ 1.For any value of at the final likelihood function in the form

L(ψ) = χ1(f0; a1)×
1

N

N∑
i=1

T∏
t=1

[
ϕt(f̃

(i)
t , f̃

(i)
t−1;ψ)χt+1(f̃

(i)
t ; at+1)

kt(f̃
(i)
t , f̃

(i)
t−1; at)

]
(9)

where
{{

f̃
(i)
t

}T
t=1

}N
i=1

represents N−independent trajectories drawn from

the sequence of importance sampling densities {mt(ft|ft−1; at)}Tt=1 .

EIS procedure tries to minimize the MC sampling variance of the MC es-
timate of the likelihood function to select values of ats. Thus the procedure
requires period by period minimization of the variance of ϕt.χt+1/kt as func-
tion of ft and ft−1 with respect to mt−distributions. Richard and Zhang (2007)
shows that the problem turns out to be solving a back recursive sequence of aux-
iliary least squares problems in the form:

(ĉt, ât) = arg min
ct∈R,at∈At

N∑
i=1

ln{
[
ϕt(f̃

(i)
t , f̃

(i)
t−1;ψ)χt+1(f̃

(i)
t ; at+1)

]
−ct − ln kt(f̃

(i)
t , f̃

(i)
t−1; at)}2 t = 1, .., T (10)

where
{
f̃
(i)
t

}T
t=1

denotes a trajectory drawn from an initial sequence of aux-

iliary samplers
{
mt(ft|ft−1; a(0)t )

}T
t=1

where i = 1, ..., N (i.i.d.).

For the initial values of the auxiliary parameters we use Taylor series approx-
imations to ϕt.χt+1. Then we iterate the LS problems by replacing the initial
samplers by the previous stage importance samplers. For convergence of these
iterations to a fixed-point solution for auxiliary parameters we use common
random numbers (CRNs). For the Gaussian EIS Samplers CRNs are N(0, 1).
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2.2 Implementation of EIS in our model

According to equations 4-5, the conditional distribution of ft given ft−1 can be
written as

p(ft|ft−1;ψ) = (2π)−P/2|H−1|−1/2 × exp

{
−1

2
(ft −∆ft−1)

′
H (ft −∆ft−1)

}
(11)

where ∆ and H are both diagonal where H represents the inverse of the
covariance matrix of ft given ft−1.

Application of sequential EIS to this specific model requires the factor in the
model to be parametrized as

ϕt(ft, ft−1;ψ) = p(ft|ft−1;ψ).

[
J∏
i=1

p(rtj |θtj)
]

(12)

where θtj is a linear function of ft.When the selected kernel kt(ft, ft−1; at) is
Gaussian in both ft and ft−1 then the integrating constant χt(ft−1; at) is itself
Gaussian in ft−1. Therefore this means the sole non-Gaussian part ϕt.χt+1 in
the likelihood function which is approximated by kt is the factor of the prod-
uct of J conditional densities of the return. The Gaussian kernel density is
characterized by:

kt(ft, ft−1; at) = p(ft|ft−1;ψ)ζt(ft; at)χt+(ft; at+1) (13)

Where ζt is the product of J univariate Gaussian kernels in θtj which is
designed to approximate the product of J conditional densities of the return,
J∏
i=1

p(rtj |θtj) and it is parametrized as

ζt(ft; at) = exp

{
−1

2

(
θ′tBtθt − 2θ′tct

)}
(14)

Bt = diag(btj) represents a J × J positive-definite diagonal matrix and
ct = (ctj) is J−dimensional vector. Then the EIS auxiliary parameter at is
defined as a′t = (vech(Bt)

′, c′t). Since ln p(ft|ft−1;ψ) and lnχt+1 appear in both
sides of the Equation 10 they cancel out in the derivation and the regression can
be estimated as J independent linear least squares regressions of the conditional

densities of return,
{

ln p(rtj |θ̃
(i)

tj )

}N
i=1

on

{(
θ̃
(i)

tj ,

[
θ̃
(i)

tj

]2)}N
i=1

and intercepts.

Since the density kernels depend upon one period ahead integrating con-
stants we obtain them back-recursively. For the one-period ahead integrating
constants which are also a function of ft we use the following parametrization:

χt+(ft; at+1) = exp

{
−1

2
(f ′tPtft − 2f ′tqt+1 + rt+1)

}
(15)
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where (Pt+1, qt+1, rt+1) are appropriate functions of the EIS auxiliary para-
meters at+1 which result from the backward recursive process. Since χT+1 ≡ 1
the initial values of the parameters in the integrating constant are equal to 1.
When we write down the Gaussian kernel with respect to the model specific
densities and parametrization we obtain

kt(ft, ft−1; at) = (2π)−P/2
∣∣H−1∣∣−1/2×exp{−1

2
[ft − (dt +Gtft−1)]

′
Mt [ft − (dt +Gtft−1)] +

+
(
µ′Btµ− 2µ′ct + f ′t−1∆

′H∆ft−1 + rt+1
)
− (dt +Gtft−1)

′
Mt (dt +Gtft−1)}

(16)
with

Mt = Γ′BtΓ +H + Pt+1 (17)

dt = M ′t−1 [qt+1 + Γ′ (ct −B′tµ)]

Gt = M ′t−1H∆

The formulation shows that the EIS sampler for ft|ft−1 is given by

mt(ft|ft−1; at) ∼ N
(
dt +Gtft−1,M

−1
t

)
(18)

and if we regroup the remaining terms in the kernel, the parameters in the
integrating constant are in the form

Pt = ∆′H∆−G′tMtGt (19)

qt = G′tMtdt

rt = µ′Btµ− 2µ′ct + rt+1 − d′tMtdt + ln |H−1| − ln |M−1t |

Therefore we can compute the likelihood EIS estimates by following the steps
below:
Step 1. Generate N−independent P−dimensional trajectories from a se-

quence of initial samplers
{
mt(ft|ft−1; a(0)t )

}
. To obtain the initial samplers

we use a second order Taylor Series Approximation in θtj to ln
N

Π
i=1
p(rtj |θtj)

around the unconditional expectation of θtj which is equal to µj . In our model
these initial values are equal to:

B
(0)
t = diag

(
1

2
r2tj exp(−µj)

)
and c(0)t = −1

2

(
1 +

(
1 + µj

)
r2tj exp(−µj)

)
(20)

Then we substitute these values to Equation 17-19 to construct initial sam-
pler

Step 2. We construct θt = µ+ Γft by using the the simulated ft-trajectories
in the precious step to solve back recursively the following J−independent linear
regression functions for each period.
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ln p

(
rt1|θ̃

(i)

t1

)
= cons tan t+

1

2
bt1

[
θ̃
(i)

t1

]2
+ ctJ θ̃

(i)

t1 + ζ
(i)
t1 i = 1, ...., N (21)

...

ln p

(
rtJ |θ̃

(i)

tJ

)
= cons tan t+

1

2
btJ

[
θ̃
(i)

tJ

]2
+ ctJ θ̃

(i)

tJ + ζ
(i)
tJ i = 1, ...., N (22)

where ζ(i)tj denotes the error term of regression (t, j).

Step 3. The back recursive regression in the previous step provides B̂t =
diag(̂btj) and ĉt = (ĉtj) which then we use to construct EIS-sampling densities
{mt(ft|ft−1; ât)} back-recursively by replacing the initial values used in Step 1
by these estimated values.

Step 4. Finally we use these new N-independent trajectories to repeat steps
2 and 3 to compute EIS-MC estimate of the likelihood function until the con-
vergence is achieved.

3 Data

In this paper we use 3 stocks from six different sectors. The data covers the
period from January 1st 1990 to September 23rd 2014. Returns are calculated
as logarithmic returns from stock indices. The stocks covered in this paper are
Coca Cola, Proctor and Gamble and Walmart from Consumer Staples sector,
Chevron, Conoco Phillips and Exxon from Energy sector, American Express,
CitiBank and JP Morgan from Finance sector, Bristol-Squibb-Myers, Pfizer
and Merck from Health sector, Boeing, Caterpillar and General Electrics from
Industrials sector and finally IBM, Motorola and Oracle from Technology sector.
We analyze each sector separately and as such the volatility of each stock is
formed as a linear combination of the factor specific to the industry and its own
idiosyncratic factor.

4 Empirical Results

We estimate a multivariate stochastic volatility model for a panel of stock re-
turns for a number of S&P 500 firms from different industries. Considering the
joint behavior of the volatility for different stocks in the same industry, we al-
low for a single common industry factor and J stock-specific factors, where J is
equal to the number of stocks in each industry. Hence in total for each industry
we have J + 1 factors for each industry. The results are presented in Tables 1 to
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6, First of all, when trying to construct an optimal portfolio we need to take into
account the fact that the results among sectors have important similarities and
differences. For example for the consumer staples, industrials and technology
sectors the results indicate that the industry specific factor δ displays high per-
sistence that dominates any stock specific persistence parameters. On the other
hand for the remaining sectors,the industry specific factor has low persistence
and it is the stock specific δ′s that exhibit high persistence rates. Furthermore,
estimates of the latent factor variances ν′s also follow a similar pattern, in-
dicating similar magnitudes for the stock specific and industry specific cases.
Hence again, the consumer staples, industrials and technology sectors behave as
a similar group and the same is true for energy, finance and health. When we
compare these results with the results of Ozturk and Richard (2015) who used a
univariate framework of analysis, we can conclude that our results confirm their
finding that volatilities of the stocks in the same industry behave similarly, yet
we also show that when the industry factor is taken into consideration we can
discern whether this similarity in behavior is industry specific or not. The con-
sumer staples, industry and technology sectors are good examples where the
similarity in behavior is mostly generated by the industry itself. The industrials
sector seems to be the sector which is dominated by the industry specific factor
the most. Only for one of the stocks, Boeing, the persistence parameter for the
stock specific factor is significant. In the consumer staples sector for one of the
stocks, PG, the stock-specific persistence is insignificant and for the technology
sector it is significant for all stocks. Therefore our results suggest, that if we
want to diversify risk constructing a portfolio from stocks in the same sector
(consumer staples, industrials and technology sectors) will fail to achieve opti-
mal risk diversification. However, for the remaining sectors, since the industry
factor persistence is lower than that of individual stocks, it is possible to di-
versify risk within the same sector. Therefore this also indicates that a careful
analysis of the specific sector is necessary during the portfolio allocation.
Our results reveal that there are important differences in the industry effects,

something that suggests differential gains to portfolio allocations in the different
industries that we examine. There are differences due to idiosyncratic factors
and the common industry factors that suggest that each industry requires a sep-
arate treatment in arriving at portfolio allocations. Therefore investors should
treat their portfolio allocation differently based on the industry they are invest-
ing in

5 Conclusion

We estimate a multivariate stochastic volatility model for a panel of stock re-
turns for a number of S&P 500 firms from different industries. As in the case
of a univariate model we use an effi cient importance sampling (EIS) method
to estimate the likelihood function of the given multivariate system that we
analyze. As opposed to univariate methods where each return is estimated sep-
arately for each firm, our results are based on joint estimation that can account
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for potential common error term interactions based on industry characteristics
that cannot be detected by univariate methods. In our analysis we follow a sim-
ilar methodology of Jung et al. (2009). Considering the joint behavior of the
volatility for different stocks in the same industry, we allow for a single common
industry factor and J stock-specific factors, where J is equal to the number of
stocks in each industry. Our results reveal that there are important differences
in the industry effects, something that suggests differential gains to portfolio
allocations in the different industries that we examine. There are differences
due to idiosyncratic factors and the common industry factors that suggest that
each industry requires a separate treatment in arriving at portfolio allocations.
Therefore investors should treat their portfolio allocation differently based on
the industry they are investing in.
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6 Tables

Table 1. Results for Consumer Staples Sector

Coca Cola PG Walmart
μ 0.529 0.612 0.514

[0.078] [0.077] [0.083]
δ 0.407 0.0508 0.444

[0.082] [0.064] [0.091]
ν 0.494 0.489 0.457

[0.029] [0.020] [0.037]
γ 1 0.975 1.045

[0.037] [0.038]

Industry δ ν
Factor 0.989 0.118

[0.002] [0.011]

Consumer Staples

Table 2. Results for Energy Sector

Chevron Conoco Exxon
μ 0.316 0.762 0.305

[0.118] [0.273] [0.145]
δ 0.997 0.998 0.997

[0.001] [0.001] [0.002]
ν 0.025 0.042 0.037

[0.006] [0.008] [0.006]
γ 1 0.867 0.952

[0.072] [0.061]

Industry δ ν
Factor 0.386 0.613

[0.046] [0.029]

Energy
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Table 3. Results for Finance Sector

Amex Citi JP
μ 0.678 0.722 0.811

[0.134] [0.116] [0.121]
δ 0.998 0.998 0.997

[0.001] [0.001] [0.001]
ν 0.047 0.042 0.055

[0.008] [0.006] [0.008]
γ 1 1.03 1.033

[0.065] [0.064]

Industry δ ν
Factor 0.345 0.639

[0.049] [0.033]

Finance

Table 4. Results for Health Sector

BSM Pfizer Merck
μ 0.625 0.46 0.567

[0.079] [0.147] [0.128]
δ 0.998 0.997 0.997

[0.001] [0.001] [0.001]
ν 0.044 0.045 0.042

[0.006] [0.005] [0.006]
γ 1 0.947 1.053

[0.044] [0.047]

Industry δ ν
Factor 0.339 0.743

[0.032] [0.025]

Health
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Table 5. Results for Industrials Sector

Boeing Caterpillar GE
μ 0.477 0.468 0.639

[0.076] [0.074] [0.098]
δ 0.459 0.079 0.08

[0.107] [0.099] [0.214]
ν 0.485 0.578 0.369

[0.043 [0.031] [0.040]
γ 1 0.993 1.324

[0.044] [0.052]

Industry δ ν
Factor 0.978 0.145

[0.004] [0.015]

Industrials

Table 6. Results for Technology Sector

IBM Motorola Oracle
μ 0.734 0.766 0.947

[0.068] [0.068] [0.082]
δ 0.764 0.883 0.34

[0.065] [0.021] [0.098]
ν 0.445 0.36 0.602

[0.058] [0.036] [0.032]
γ 1 0.911 1.308

[0.068] [0.066]

Industry δ ν
Factor 0.995 0.073

[0.002] [0.008]

Technology
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